• Title/Summary/Keyword: Reliability Process

Search Result 3,980, Processing Time 0.027 seconds

A Study on the Inventive Problem Solving Method for Reliability Assurance of Product Development Process using the TRIZ (제품개발 공정신뢰성 확보를 위한 TRIZ 기반 창조적 문제해결 방법 연구)

  • Kim, Jong-Gurl;Lee, Suk-Jun;Kim, Hyung-Man
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.633-639
    • /
    • 2008
  • Recently, product-reliability and process-reliability in product development processes has been regarded as an important issue in many manufacturers. TRIZ which is theory for inventive solving is required to obtain reliability of each process. To solve the technological problems, TRIZ provides problems can be occurred in product development processes as a contradiction matrix based on 40 creative invention principles with alternatives for physical and technological contradiction. This paper suggests the method for inventive solving to ensure the reliability assurance of product development processes based on TRIZ.

  • PDF

Lloyds Register Asia Rail Systems Reliability Lifecycle Management

  • Jonathan, Bouchard
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.27-43
    • /
    • 2003
  • Reliability Lifecycle from Concept to In-Service Operation and Maintenance. Reliability management must consider - SAFETY - SERVICE REQUIREMENTS. Reliability targets/objectives can be specified at feasibility stage. Reliability analysis to support design process. Reliability assessment to support reliability growth or contractual demonstration. Maintenance optimisation to improve reliability during lifetime of operation. Lessons learnt incorporated into next generation of trains.

  • PDF

Reliability Analysis for Deuterium Incorporated Gate Oxide Film through Negative-bias Temperature Instability and Hot-carrier Injection (Negative-bias Temperature Instability 및 Hot-carrier Injection을 통한 중수소 주입된 게이트 산화막의 신뢰성 분석)

  • Lee, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.687-694
    • /
    • 2008
  • This paper is focused on the improvement of MOS device reliability related to deuterium process. The injection of deuterium into the gate oxide film was achieved through two kind of method, high-pressure annealing and low-energy implantation at the back-end of line, for the purpose of the passivation of dangling bonds at $SiO_2/Si$ interface. Experimental results are presented for the degradation of 3-nm-thick gate oxide ($SiO_2$) under both negative-bias temperature instability (NBTI) and hot-carrier injection (HCI) stresses using P and NMOSFETs. Annealing process was rather difficult to control the concentration of deuterium. Because when the concentration of deuterium is redundant in gate oxide excess traps are generated and degrades the performance, we found annealing process did not show the improved characteristics in device reliability, compared to conventional process. However, deuterium ion implantation at the back-end process was effective method for the fabrication of the deuterated gate oxide. Device parameter variations under the electrical stresses depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to conventional process. Our result suggests the novel method to incorporate deuterium in the MOS structure for the reliability.

On Software Reliability Engineering Process for Weapon Systems (무기체계를 위한 소프트웨어의 신뢰성 공학 프로세스)

  • Kim, Ghi-Back;Lee, Jae-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.332-345
    • /
    • 2011
  • As weapon systems are evolving into more advanced and complex ones, the role of the software is becoming heavily significant in their developments. Particularly in the war field of today as represented by the network centric warfare(NCW), the reliability of weapon systems is definitely crucial. In this context, it is inevitable to develop software reliably enough to make the weapon systems operate robustly in the combat field. The reliability engineering activities performed to develop software in the domestic area seem to be limited to the software reliability estimations for some projects. To ensure that the target reliability of software be maintained through the system's development period, a more systematic approach to performing software reliability engineering activities are necessary from the beginning of the development period. In this paper, we consider the software reliability in terms of the development of a weapon system as a whole. Thus, from the systems engineering point of view, we analyze the models and methods that are related to software reliability and a variety of associated activities. As a result, a process is developed, which can be called the software reliability engineering process for weapon systems (SREP-WS), The developed SREP-WS can be used in the development of a weapon system to meet a target reliability throughout its life-cycle. Based on the SREP-WS, the software reliability could also be managed quantitatively.

Improving Development Process for Product Safety

  • Jung, Won
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.262-267
    • /
    • 2004
  • In designing and evaluating a new product, the company needs to give thought to the entire spectrum of produceability, usability, and ultimate reliability, as well as safety of users. For each design review(DR) stage, a formal, systematic, documented review and evaluation of a product design is conducted to assure that the product is safe and reliable, that costs and materials have been optimized, and that the design complies with its specifications and requirements. This paper presents how to improve development process for product's safety and reliability. The process requires gathering the appropriate information, determining the limits of the product, estimating risk associated with the task-hazard combinations, and reducing risk according to a prioritized procedure.

  • PDF

A Comparative Study of Software Reliability Model Considering Log Type Mean Value Function (로그형 평균값함수를 고려한 소프트웨어 신뢰성모형에 대한 비교연구)

  • Shin, Hyun Cheul;Kim, Hee Cheul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.19-27
    • /
    • 2014
  • Software reliability in the software development process is an important issue. Software process improvement helps in finishing with reliable software product. Infinite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, proposes the reliability model with log type mean value function (Musa-Okumoto and log power model), which made out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on mean square error (MSE) and coefficient of determination($R^2$), for the sake of efficient model, was employed. Analysis of failure using real data set for the sake of proposing log type mean value function was employed. This analysis of failure data compared with log type mean value function. In order to insurance for the reliability of data, Laplace trend test was employed. In this study, the log type model is also efficient in terms of reliability because it (the coefficient of determination is 70% or more) in the field of the conventional model can be used as an alternative could be confirmed. From this paper, software developers have to consider the growth model by prior knowledge of the software to identify failure modes which can be able to help.

Developing the Optimal Decision-Making Process through Preventive Maintenance Policy Based on the Reliability Threshold for Leased Equipment (대여장비의 신뢰도 기반 예방보전 정책을 통한 최적 의사결정 과정 개발)

  • Bae, Kiho;Lee, Juhyun;Park, Seonghwan;Ahn, Suneung
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.246-255
    • /
    • 2017
  • Purpose: This study proposes the optimal PM (preventive maintenance) policy of leased equipment for lessee's decision-making using two types of reliability condition. Methods: We consider reliability threshold based PM model. Equipment reliability is estimated and used as condition variable. The effect of repair for maintenance is imperfect and represented by age reduction factor. Results: We provide two PM policies. Policy 1 is focused on minimized total cost. This policy guarantees reliability threshold until last maintenance action. Policy 2 focus on maintaining reliability threshold during leased period. The proposed approach provides optimal reliability threshold under number of PM. Through result, we finally construct decision-making process for lessee using reliability threshold and end of reliability. Conclusion: This study provides two PM policy for lessee's decision-making. Through numerical example, we get a result of optimal reliability threshold, number of PM, optimum alternative under lessee's reliability condition.

Estimating the Reliability of Virtual Metrology Predictions in Semiconductor Manufacturing : A Novelty Detection-based Approach (이상치 탐지 방법론을 활용한 반도체 가상 계측 결과의 신뢰도 추정)

  • Kang, Pil-Sung;Kim, Dong-Il;Lee, Seung-Kyung;Doh, Seung-Yong;Cho, Sung-Zoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.1
    • /
    • pp.46-56
    • /
    • 2012
  • The purpose of virtual metrology (VM) in semiconductor manufacturing is to predict every wafer's metrological values based on its process equipment data without an actual metrology. In this paper, we propose novelty detection-based reliability estimation models for VM in order to support flexible utilization of VM results. Because the proposed model can not only estimate the reliability of VM, but also identify suspicious process variables lowering the reliability, quality control actions can be taken selectively based on the reliance level and its causes. Based on the preliminary experimental results with actual semiconductor manufacturing process data, our models can successfully give a high reliance level to the wafers with small prediction errors and a low reliance level to the wafers with large prediction errors. In addition, our proposed model can give more detailed information by identifying the critical process variables and their relative impacts on the low reliability.

Investigation on Intermittent Life Testing Program for IGBT

  • Cheng, Yu;Fu, Guicui;Jiang, Maogong;Xue, Peng
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.811-820
    • /
    • 2017
  • The reliability issue of IGBT is a concern for researchers given the critical role the device plays in the safety of operations of the converter system. The reliability of power devices can be estimated from the intermittent life test, which aims to simulate typical applications in power electronics in an accelerated manner to obtain lifetime data. However, the test is time-consuming, as testing conditions are not well considered and only rough provisions have been made in the current standards. Acceleration of the test by changing critical test conditions is controversial due to the activation of unexpected failure mechanisms. Therefore, full investigations were conducted on critical test conditions of intermittent life test. A design optimization process for IGBT intermittent life testing program was developed to save on test times without imposing additional failure mechanisms. The applicability of the process has been supported by a number of tests and failure analysis of the test results. The process proposed in this paper can guide the test process for other power semiconductors.

Creation and Use of Process oriented Knowledge for Effective FRACAS (효과적인 FRACAS 운용을 위한프로세스 지식의 생성과 활용)

  • Lee, Jae-Hoon;Yoo, Ki-Hoon;Kim, Ki-Young;Seol, Dong-Jin;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.8 no.3
    • /
    • pp.113-124
    • /
    • 2008
  • In reliability engineering, failure reporting, analysis, and corrective action system (FRACAS) is an useful tool for effective failure reporting and related operations. FRACAS is generally mainly focused on implementation of its closed-loop process, but also includes various related information which has to be effectively managed such as failure types, failure modes, failure mechanisms, and corrective actions. In this study, we adopt and utilize the concept of process knowledge, and create it through abstraction of FRACAS information. At each step of closed-loop process, the necessary type of knowledge, priority and usability are clearly defined. This study also suggests corresponding management tools such as business process management system, knowledge management system, and their key elements and functions to deal with process knowledge. A prototype system using simple closed-loop process with its process knowledge is presented to demonstrate the feasibility of the proposed work.

  • PDF