• Title/Summary/Keyword: Reliability Physics Analysis

Search Result 67, Processing Time 0.028 seconds

A Study on Design for Reliability for the PBA of Warship based on Reliability Physics Analysis (신뢰성 물리학 분석 기반 함정탑재 PBA 신뢰성 설계에 대한 연구)

  • Cha, Jong-Han;Park, Kyoung-Deok;Lee, Ki-Won;Bak, Byeong-Ho;Kim, Hee-Earn;Kwon, Hyeong-Ahn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.535-545
    • /
    • 2019
  • The PBA of ship weapon system should be installed and operated under harsh environmental conditions and so it should be highly reliable to endure the mission profiles during its entire lifetime. In the case of PBA failure during operation, rapid maintenance is highly likely to be difficult due to problems such as supply of parts, which can have a devastating effect on the mission. In order to validate the reliability of PBA, a series of tests are performed with PBA samples, but they require time, testing facilities, samples, expenses and failure analysis if failed. The reliability of PBA is predicted on the basis of specifications such as MIL-HDBK-217F, but this specification does not take into account failure mechanisms for specific design details, environment and usage, interconnects and its characteristics that drive many failures of PBA in the field. Therefore, this study predicts the reliability of PBA using an RPA tool and proposes the RPA methodology as a validation process at the design stage. With RPA, it is now possible to achieve design validation including inherent failure mechanism, identification of weakest link, alternative design options, and test plan development.

An Approach of Combining Failure Physics and Lifetime Analysis for Product Reliability Improvement: An Application to BGA(Ball Grid Array) Package (고장물리와 수명분석을 이용한 제품신뢰도 개선: BGA(Ball Grid Array) 패키지에 대한 사례연구를 중심으로)

  • Lee, K.T.;Shin, C.H.;Hahn, H.S.;Evans, J.W.;Kim, S.W.;Lee, H.J.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.2
    • /
    • pp.204-216
    • /
    • 1999
  • Failure physics and statistical lifetime analysis constitute the two extreme ends of the reliability engineering spectrum, and studies that relate failure mechanisms to failure distributions have been near non-existent. This paper is an attempt to stimulate interest to fill the gap between the two extremes and proposes an approach of combining them through i) developing a failure mechanism model, ii) generating failure times by Monte Carlo simulation with the model, iii) deriving the failure time distribution and evaluating the product reliability, and iv) improving the product reliability by the sensitivity analysis. An application of the proposed approach to the BGA(Ball Grid Array) surface mount package is also provided.

  • PDF

Adaptively selected autocorrelation structure-based Kriging metamodel for slope reliability analysis

  • Li, Jing-Ze;Zhang, Shao-He;Liu, Lei-Lei;Wu, Jing-Jing;Cheng, Yung-Ming
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.187-199
    • /
    • 2022
  • Kriging metamodel, as a flexible machine learning method for approximating deterministic analysis models of an engineering system, has been widely used for efficiently estimating slope reliability in recent years. However, the autocorrelation function (ACF), a key input to Kriging that affects the accuracy of reliability estimation, is usually selected based on empiricism. This paper proposes an adaption of the Kriging method, named as Genetic Algorithm optimized Whittle-Matérn Kriging (GAWMK), for addressing this issue. The non-classical two-parameter Whittle-Matérn (WM) function, which can represent different ACFs in the Matérn family by controlling a smoothness parameter, is adopted in GAWMK to avoid subjectively selecting ACFs. The genetic algorithm is used to optimize the WM model to adaptively select the optimal autocorrelation structure of the GAWMK model. Monte Carlo simulation is then performed based on GAWMK for a subsequent slope reliability analysis. Applications to one explicit analytical example and two slope examples are presented to illustrate and validate the proposed method. It is found that reliability results estimated by the Kriging models using randomly chosen ACFs might be biased. The proposed method performs reasonably well in slope reliability estimation.

Study of Electronic Hardware Integrated Failure Rate: Considering Physics of Failure Rate and Radiation Failures Rate (물리 고장률과 방사선 고장률을 반영한 전자 하드웨어 통합 고장률 분석 연구)

  • Dong-min Lee;Chang-hyeon Kim;Kyung-min Park;Jong-whoa Na
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.216-224
    • /
    • 2024
  • This paper presents a method for analyzing the reliability of hardware electronic equipment, taking into account failures caused by radiation. Traditional reliability analysis primarily focuses on the wear out failure rate and often neglects the impact of radiation failure rates. We calculate the wear out failure rate through physics of failure analysis, while the radiation failure rate is semi-empirically estimated using the Verilog Fault Injection tool. Our approach aims to ensure reliability early in the development process, potentially reducing development time and costs by identifying circuit vulnerabilities in advance. As an illustrative example, we conducted a reliability analysis on the ISCAS85 circuit. Our results demonstrate the effectiveness of our method compared to traditional reliability analysis tools. This thorough analysis is crucial for ensuring the reliability of FPGAs in environments with high radiation exposure, such as in aviation and space applications.

A high-stability neutron generator for industrial online elemental analysis

  • Xiang-quan Chen;Lei Xiong;Hui Xie;Jing-fu Guo;Xue-ming Zhang;Yong-jun Dong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1441-1453
    • /
    • 2024
  • The yield stability of the neutron generator directly affects the accuracy of elemental analysis. This paper presents an industrial fully automatic neutron generator with a 48 mm neutron tube based on PLC to improve the stability and reliability of the neutron generator in industrial applications. By integrating a Kalman Filter with the PID algorithm in a PLC, the neutron yield of the generator is remarkably stabilized, achieving 1 × 108n/s. The neutron generator has been employed for industrial online elemental analysis. The results demonstrate that only a slight fluctuation of ±0.82 % exists in the neutron yield, and the reproducibility of the generator holds at a significant level of 0.05. This improved neutron generator can be applied to the online bulk analysis of carbon in coal-fired power stations and absolute measurement of neutron source emission rate.

Time Dependent Reliability Analysis of the Degrading RC Containment Structures Subjected to Earthquake Load (지진하중을 받는 RC 격납건물의 열화에 따른 신뢰성 해석)

  • 오병환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.233-240
    • /
    • 2000
  • Nuclear power plant structures may be exposed to aggressive environmental effects than may cause their strength and stiffness to decrease over their service lives, Although the physics of these damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances such evaluations are generally very difficult and remain novel. The assessment of existing RC containment in nuclear power plants for continued service must provide quantitative evidence that they are able to withstand future extreme loads during a service period with an acceptable level of reliability. Rational methodologies to perform the reliability assessment can be developed from mechanistic models of structural deterioration using time-dependent structural reliability analysis to take earthquake loading uncertainties into account. The final goal of this study is to develop the reliability analysis of RC containment structures. The cause of the degrading is first clarified and the reliability assessment has been conducted. By introducing stochastic analysis based on random vibration theory the reliability analysis which can determine the failure probabilities has been established.

  • PDF

The Development and Analysis of a Test for Assessment of Physics Inquiry Experiment. (물리 탐구 실험의 평가를 위한 도구의 개발과 분석)

  • Kim, Mi-Kyung;Oh, Hee-Gyun;Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.1
    • /
    • pp.51-60
    • /
    • 1996
  • The purpose of this study is to develope and analyze a test for the assessment of physics inquiry experiment. To do this, three experiments about 'analysis of motion', 'the relation of force and acceleration', and 'free fall motion' in high school physics textbooks were chosen, and 5 scientific inquiry domains and 16 science process skills have been specified. For each experiments, test sheet of $29{\sim}44$ questions for assessing students' ability about physics inquiry experiment were developed on the basis of the scientific inquiry processes developed earlier. After instruction about 3 experiments mentioned above, a test was administered to the students who took experiment. After the adminstration of a test, the ratio of correct answers, discrimination index, and reliability were analyzed. Using the ratio of correct answers, we can determine item difficulty. Through the D.I(discrimination index), we can find which items can discriminate the students who took experiment well from those who took experiment badly, and we can also find the stability of a test result by the reliability analysis. The test developed in this study were also administered to the students who did not take experiments, and the results were compared with the those of the students who took experiments. With the comparison by chi-square method, we could find which items can discriminate the students who took experiments from those who did not take experiments.

  • PDF

Failure Mechanism of Bendable Embedded Electronic Module Under Various Environment Conditions (Bendable 임베디드 전자모듈의 손상 메커니즘)

  • Jo, Yun-Seong;Kim, A Young;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.59-63
    • /
    • 2013
  • A bendable electronic module has been developed for a mobile application by using a low-cost roll-to-roll manufacturing process. In flexible embedded electronic module, a thin silicon chip was embedded in a polymer-based encapsulating adhesive between flexible copper clad polyimide layers. To confirm reliability and durability of prototype bendable module, the following tests were conducted: Moisture sensitivity level, thermal shock test, high temperature & high humidity storage test, and pressure cooker tester. Those experiments to induce failure of the module due to temperature variations and moisture are the experiment to verify the reliability. Failure criterion was 20% increase in bump resistance from the initial value. The mechanism of the increase of the bump resistance was analyzed by using non-destructive X-ray analysis and scanning acoustic microscopy. During the pressure cooker test (PCT), delamination occurred at the various interfaces of the bendable embedded modules. To investigate the failure mechanism, moisture diffusion analysis was conducted to the pressure cooker's test. The hygroscopic characteristics of the encapsulating polymeric materials were experimentally determined. Analysis results have shown moisture saturation process of flexible module under high temperature/high humidity and high atmosphere conditions. Based on these results, stress factor and failure mechanism/mode of bendable embedded electronic module were obtained.

A Study on Developing and Validating the Modern Physics Conceptual Diagnostic Survey for Pre-Service Physics Teachers based on the 2015 Revised National Science Curriculum (2015 개정 과학과 교육과정에 기초한 예비 물리교사를 위한 현대물리 개념 진단지 개발 및 타당화 연구)

  • Kim, Wanseon;Kim, Sung-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.253-269
    • /
    • 2020
  • This study aims to develop items to diagnose pre-service physics teachers' understanding of the conceptual knowledge of modern physics, based on the achievement criteria presented in the 2015 revised national science curriculum, and to identify the validity and reliability of the newly developed items. Data were collected from 467 pre-service physics teachers in the Physical Education Department or Science Education Department (Physics Education Major) of 15 universities across the nation. In this study the content validity, substantive validity, the internal structure validity, generalization validity, and the external validity proposed by Messick (1995) were examined by various statistical tests. The results of the MNSQ analysis showed that there was no nonconformity in the 23 items. The internal structure validity was confirmed by the standardized residual variance analysis, which shows that the 22 items was unidimensional. The generalization validity was confirmed by differential item functioning (DIF) analysis about groups lectured or not modern physics/quantum mechanics. In addition, item analysis and test analysis based on classical test theory were performed. The mean item difficulty is 0.66, mean item discrimination is 0.47 and mean point biserial coefficient obtained was 0.41. These results for item parameters satisfied the criteria respectively. The reliability of the internal consistency of the KR-20 is 0.77 and the Ferguson's delta obtained was δ = 0.972. By Rasch model analysis, the item difficulty (item measures) was discussed.

A Study on A Dynamic Reliability Analysis Model (동적신뢰도 평가모델의 연구)

  • 제무성
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.04a
    • /
    • pp.239-246
    • /
    • 2000
  • This paper presents a new dynamic approach for assessing feasibility associated with the implementation of accident management strategies by the operators. This approach includes the combined use of both the concept of reliability physics and a dynamic event tree generation scheme. The reliability physics is based on the concept of a comparison between two competing variables, i.e., the requirement and the achievement parameter, while the dynamic event tree generation scheme on the continuous generation of the possible event sequences at every branch point up to the desired solution. This approach is applied to a cavity flooding strategy in a reference plant, which is to supply water into the reactor cavity using emergency fire systems in the station blackout sequence. The MAAP code and Latin Hypercube sampling technique are used to determine the uncertainty of the requirement parameter. It has been demonstrated that this combined methodology may contribute to assessing the success likelihood of the operator actions required during accidents and therefore to developing the accident management procedures.

  • PDF