• Title/Summary/Keyword: Reliability Network

Search Result 1,890, Processing Time 0.04 seconds

An Efficient Image Information Transfer System for Wireless Image Sensor Network Environments (무선 이미지 센서네트워크 환경을 위한 효율적인 영상 정보 전송 시스템)

  • Lee, Sang-Shin;Kim, Jae-Ho;Won, Kwang-Ho;Kim, Joong-Hwan
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.3
    • /
    • pp.207-214
    • /
    • 2008
  • There are lots of studies on application systems using wireless sensor networks. As the application systems are adapted to industrial field, the reliability of these systems becomes new key feature. The lack of reliability is an obstacle to extension of wireless sensor networks. In this paper, we propose the monitoring system framework that can offer the reliability of wireless sensor networks using a micro camera module and wireless sensor network nodes. And also we propose the efficient transfer method for image information over low rate wireless networks. Using these system framework and transfer method, we implement WiSN(Wireless image Sensor Network) based fire monitoring system.

Coded Cooperation Communication over Two-Way Relay Network (양 방향 중계 네트워크에서의 부호화 협력 통신)

  • Park, Ji-Hwan;Kong, Hyung-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.24-29
    • /
    • 2011
  • Comparing conventional one-way relaying, two-way relaying scheme with network coding can achieve high throughput by reducing the transmission time. Coded cooperation protocol, which is a algorithm that uses coding on physical layer, can achieve high reliability. In this paper, we propose coded cooperation protocol over two-way relay network. Simulation results show proposed protocol has better performance in terms of reliability and throughput compare with conventional amplify and forward protocol. Also, with same throughput, proposed protocol has better performance in terms of reliability compare with the conventional hybrid decoded and forward protocol.

Reliable Transmission Using Intermediate Relay Node-based Transmission for Reliability in Sensor Network (센서 네트워크의 고 신뢰성을 위한 중계 노드 기반 전송)

  • Lee Bo-Hyung;Yoon Hyung-Wook;Park Jongho;Chung Min Young;Lee Tea-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.850-857
    • /
    • 2005
  • Sensor networks consist of sensor nodes with small size, low cost, lowpower consumption, and multi-functions to sense, to process and to communicate. The main issue in sensor networks has been focused on minimizing power consumption of sensors to maximize network life time. In some critical applications, however, the most important issue is to transmitsensing information to the end user (the sink node) with reliability. Reliable information forwarding using multiple paths in sensor networks (ReinForM) has been proposed to achieve desired reliability in the error-prone channel, but it needs increasing transmission riverhead as the channel error rate becomes high and the number of hops between the source node and the sink node increases. In this paper, we propose a reliable transmission rnechanissmusing intermediate source nodes in sensor networks (ReTrust) to reduce packet overhead while keeping the desired reliability. ReTrust has beenshown to provide desired reliability and reduced overhead via simulationsand analysis.

A Study on the Reliability/Safety assessment and improvement of USN Gateway for Train Control (열차제어를 위한 USN Gateway 신뢰성, 안전성 평가 및 향상에 관한 연구)

  • Sin, Duc-Ko;Jo, Hyun-Jeong;Shin, Kyeng-Ho;Song, Yong-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.416-424
    • /
    • 2011
  • The recent development of USN (Ubiquitous Sensor Network) technology has broadened its applications to many fields of industry. The USN technology enables the system to monitor and control the status of distributed sensor nodes based on the low-powered communications. Applying the USN in the train control domain, the operational efficiency can be enhanced, where the reliability and the safety of the system are the key challenges. This paper suggests the system design for evaluating and improving the reliability and safety of the gateway, which is a USN component that manages the radio network among the sensors and collects the information from them. For this purpose, the reliability and the level of safety integrity of a general gateway have been predicted quantitatively and the supplementary design has been proposed for the selected week points. The verification on the reliability and the safety of the improved gateway according to the related standards has been followed. With the results of the study, the applicability of USN gateway for train control systems has been reviewed.

Resilient Packet Transmission (RPT) for the Buffer Based Routing (BBR) Protocol

  • Rathee, Geetanjali;Rakesh, Nitin
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.57-72
    • /
    • 2016
  • To provide effective communication in the wireless mesh network (WMN), several algorithms have been proposed. Since the possibilities of numerous failures always exist during communication, resiliency has been proven to be an important aspect for WMN to recover from these failures. In general, resiliency is the diligence of the reliability and availability in network. Several types of resiliency based routing algorithms have been proposed (i.e., Resilient Multicast, ROMER, etc.). Resilient Multicast establishes a two-node disjoint path and ROMER uses a credit-based approach to provide resiliency in the network. However, these proposed approaches have some disadvantages in terms of network throughput and network congestion. Previously, the buffer based routing (BBR) approach has been proposed to overcome these disadvantages. We proved earlier that BBR is more efficient in regards to w.r.t throughput, network performance, and reliability. In this paper, we consider the node/link failure issues and analogous performance of BBR. For these items we have proposed a resilient packet transmission (RPT) algorithm as a remedy for BBR during these types of failures. We also share the comparative performance analysis of previous approaches as compared to our proposed approach. Network throughput, network congestion, and resiliency against node/link failure are particular performance metrics that are examined over different sized WMNs.

Transformer Differential Relay by Using Neural-Fuzzy System

  • Kim, Byung Whan;Masatoshi, Nakamura
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.157.2-157
    • /
    • 2001
  • This paper describes the synergism of Artificial Neural Network and Fuzzy Logic based approach to improve the reliability of transformer differential protection, the conventional transformer differential protection commonly used a harmonic restraint principle to prevent a tripping from inrush current during initial transformer´s energization but such a principle can not performs the best optimization on tripping time. Furthermore, in some cases there may be false operation such as during CT saturation, high DC offset or harmonic containing in the line. Therefore an artificial neural network and fuzzy logic has been proposed to improve reliability of the transformer protection relay. By using EMTP-ATP the power transformer is modeled, all currents flowing ...

  • PDF

Dynamic Single Path Routing Mechanism for Reliability and Energy-Efficiency in a Multi Hop Sensor Network (다중 홉 센서 네트워크에서 신뢰성과 에너지 효율성을 고려한 동적 단일경로 설정기법)

  • Choi, Seong-Yong;Kim, Jin-Su;Jung, Kyung-Yong;Han, Seung-Jin;Choi, Jun-Hyeog;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.31-40
    • /
    • 2009
  • What are important in wireless sensor networks are reliable data transmission, energy efficiency of each node, and the maximization of network life through the distribution of load among the nodes. The present study proposed DSPR, a dynamic unique path routing machanism that considered these requirements in wireless sensor networks. In DSPR, data is transmitted through a dynamic unique path, which has the least cost calculated with the number of hops from each node to the sink, and the average remaining energy. At that time, each node monitors its transmission process and if a node detects route damage it changes the route dynamically, referring to the cost table, and by doing so, it enhances the reliability of the network and distributes energy consumption evenly among the nodes. In addition, when the network topology is changed, only the part related to the change is restructured dynamically instead of restructuring the entire network, and the life of the network is extended by inhibiting unnecessary energy consumption in each node as much as possible. In the results of our experiment, the proposed DSPR increased network life by minimizing energy consumption of the nodes and improved the reliability and energy efficiency of the network.

The Environmental Applications of Wireless Sensor Networks

  • Ituen, Ima;Sohn, Gun-Ho
    • International Journal of Contents
    • /
    • v.3 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • There has been increased interest in wireless sensors in the last few years. This paper provides insight into the properties that make these sensors so attractive, specifically considering their efficiency, data reliability, and the ability to verify the data generated. Some advantages a wireless network presents over traditional information sensing are discussed as well. The paper considers how the environmental field can benefit from using these networks. Some of the possible challenges this industry will face in adopting this new method of data sampling and collection are also considered. A project we conducted raised concern over measures needed for the integrity of the communication system to be maintained, thus ensuring the integrity of the data being collected. From results of an experimental project conducted in York University, the reliability and usefulness of a sensor network is discussed.

Design and Implementation of Monitoring Software for Heterogeneous Control Network (이종 제어 네트워크를 위한 모니터링 소프트웨어의 설계 및 구현)

  • Heo, Jong-Man;Ha, Jae-Yeol;Kim, Nam-Hoon;Jeon, Joseph;Lee, Kam-Rok;Chung, Bum-Jin;Kwon, Wook-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.114-116
    • /
    • 2006
  • XCP (eXtensive Control Protocol) is an information oriented protocol which delivers information with high reliability according to the predefined rule. XCP network system can be implemented on top of several physical layer such as power line, IEEE 802.15.4 and so on. In this paper. a monitoring software that evaluates the reliability and performance of the XCP network is designed and implemented. This paper presents the structure and method of the packet monitoring in the network through several interfaces such as RS-232, ethernet.

  • PDF

A Reliable Transport Supporting Method for a DTMNs (DTMNs를 위한 신뢰성 있는 데이터 전송 지원 방법)

  • Seo, Doo Ok;Lee, Dong Ho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.151-160
    • /
    • 2009
  • While portable and wireless devices are pouring, a new network technology is needed as a breakthrough. The new network technology features large delays, intermittent connectivity, and absence of an end-to-end path from sources to destinations. A network which has one of those characteristics is called DTNs(Delay Tolerant Networks). The main 4 routing methods have been researched so far in extream environment. In this paper, we look into the reliability of DTMNs(Delay Tolerant Mobile Networks) in several different situations, and propose an algorithm that selects a positive routine by sending the only information of its position when making a connection to a detected node. We simulate the proposed algorithm here in DTN using ONE simulator. As a result, it shows that the algorithm reduces the number of message transmission each node.