• Title/Summary/Keyword: Reliability Growth Model

Search Result 332, Processing Time 0.027 seconds

A Method for Selecting Software Reliability Growth Models Using Trend and Failure Prediction Ability (트렌드와 고장 예측 능력을 반영한 소프트웨어 신뢰도 성장 모델 선택 방법)

  • Park, YongJun;Min, Bup-Ki;Kim, Hyeon Soo
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1551-1560
    • /
    • 2015
  • Software Reliability Growth Models (SRGMs) are used to quantitatively evaluate software reliability and to determine the software release date or additional testing efforts using software failure data. Because a single SRGM is not universally applicable to all kinds of software, the selection of an optimal SRGM suitable to a specific case has been an important issue. The existing methods for SRGM selection assess the goodness-of-fit of the SRGM in terms of the collected failure data but do not consider the accuracy of future failure predictions. In this paper, we propose a method for selecting SRGMs using the trend of failure data and failure prediction ability. To justify our approach, we identify problems associated with the existing SRGM selection methods through experiments and show that our method for selecting SRGMs is superior to the existing methods with respect to the accuracy of future failure prediction.

Optimal Software Release Time Considering Maintenance during Operation (출시후 보수를 고려한 소프트웨어의 최적 출시시기)

  • Lee, Chin-Seung;Na, Il-Yong;Hong, Jung-Sik;Lie, Chang-Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.4
    • /
    • pp.261-266
    • /
    • 2004
  • In this paper, the software reliability growth model which incorporates the periodic maintenance after the release is proposed. Using the proposed model, the debugging and periodic maintenance cost subject to the required level of the software reliability are investigated. An optimal software release time is derived for a fixed interval of periodic maintenance. To validate the proposed model, release times obtained in this study are compared with examples. The proposed investigation is expected to be served as one of factors in determining the release time of the software where periodic maintenance is considered.

The Software Reliability Growth Models for Software Life-Cycle Based on NHPP

  • Nam, Kyung-H.;Kim, Do-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.3
    • /
    • pp.573-584
    • /
    • 2010
  • This paper considers the differences in the software execution environments in the testing phase and the operational phase to determine the optimal release time and warranty period of software systems. We formulate equations for the total expected software cost until the end of the software life cycle based on the NHPP. In addition, we derive the optimal release time that minimizes the total expected software cost for an imperfect debugging software reliability model. Finally, we analyze the sensitivity of the optimal testing and maintenance design related to variation of the cost model parameters based on the fault data observed in the actual testing process, and discuss the quantitative properties of the proposed model.

A Comparative Study of Software Reliability Model Considering Log Type Mean Value Function (로그형 평균값함수를 고려한 소프트웨어 신뢰성모형에 대한 비교연구)

  • Shin, Hyun Cheul;Kim, Hee Cheul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.19-27
    • /
    • 2014
  • Software reliability in the software development process is an important issue. Software process improvement helps in finishing with reliable software product. Infinite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, proposes the reliability model with log type mean value function (Musa-Okumoto and log power model), which made out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on mean square error (MSE) and coefficient of determination($R^2$), for the sake of efficient model, was employed. Analysis of failure using real data set for the sake of proposing log type mean value function was employed. This analysis of failure data compared with log type mean value function. In order to insurance for the reliability of data, Laplace trend test was employed. In this study, the log type model is also efficient in terms of reliability because it (the coefficient of determination is 70% or more) in the field of the conventional model can be used as an alternative could be confirmed. From this paper, software developers have to consider the growth model by prior knowledge of the software to identify failure modes which can be able to help.

A Study On The Delayed S Shaped Software Reliability Growth Model (지연 S자형 소프트웨어 신뢰도 성장모델에 관한 연구)

  • 문외식
    • Journal of the Korea Society of Computer and Information
    • /
    • v.1 no.1
    • /
    • pp.195-210
    • /
    • 1996
  • For predicting the parameters and estimating the goodness of fit reliability growth model based on NHPP(Non Homogeneous Poission Process) among various reliability growth models, a Delayed S Shaped SRGM Tool is designed and Implemented. The Implemented tool is applied to real software error data, and the result Is compared and annalized.

  • PDF

A Coverage Function for Arbitrary Testing Profile and Its Performance

  • Park Joong-Yang;Fujiwara Takaji;Park Jae-Heung
    • International Journal of Reliability and Applications
    • /
    • v.6 no.2
    • /
    • pp.87-99
    • /
    • 2005
  • Coverage-based software reliability growth models (SRGMs) have been developed and successfully applied in practice. Performance of a coverage-based SRG M depends on the coverage function employed by the SRGM. When the coverage function represents the coverage growth behavior well irrespective of type of the testing profile the corresponding coverage-based SRGM is expected to be widely applicable. This paper first conducts a study of selecting the most representative coverage functions among the available coverage functions. Then their performances are empirically evaluated and compared. The result provides a foundation for developing widely applicable coverage-based SRGMs and monitoring the progress of a testing process.

  • PDF

Software Reliability Prediction On Piecewise Weibull Failure Rate Model(PWFRM) and S-shaped Reliability Growth Model(SRGM) (다구간 와이불 고장율 모형과 S자 신뢰도 성장모형에 대한 소프트웨어 신뢰도 예측)

  • Jong-Man Park;Soo-Il Jeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.33
    • /
    • pp.119-122
    • /
    • 1995
  • Application of the PWFRM and SRGM for software reliability Prediction offers not only the judging base of model but also themselves with good applicabilty as easy-to-use tool.

  • PDF

Software Reliability Prediction Using Predictive Filter (예측필터를 이용한 소프트웨어 신뢰성 예측)

  • Park, Jung-Yang;Lee, Sang-Un;Park, Jae-Heung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2076-2085
    • /
    • 2000
  • Almost all existing software reliability models are based on the assumptions of he software usage and software failure process. There, therefore, is no universally applicable software reliability model. To develop a universal software reliability model this paper suggests the predictive filter as a general software reliability prediction model for time domain failure data. Its usefulness is empirically verified by analyzing the failure datasets obtained from 14 different software projects. Based on the average relative prediction error, the suggested predictive filter is compared with other well-known neural network models and statistical software reliability growth models. Experimental results show that the predictive filter generally results in a simple model and adapts well across different software projects.

  • PDF

A Study on the Optimum Release Model of a Developed Software with Weibull Testing Efforts (웨이블 시험노력을 이용한 개발 소프트웨어의 최적발행 모델에 관한 연구)

  • Choe, Gyu-Sik;Jang, Yun-Seung
    • The KIPS Transactions:PartD
    • /
    • v.8D no.6
    • /
    • pp.835-842
    • /
    • 2001
  • We propose a software-reliability growth model incoporating the amount of testing effort expended during the software testing phase. The time-dependent behavior of testing effort expenditures is described by a Weibull curve. Assuming that the error detection rate to the amount of testing effort spent during the testing phase is proportional to the current error content, a software-reliability growth model is formulated by a nonhomogeneous Poisson process. Using this model the method of data analysis for software reliability measurement is developed. After defining a software reliability, we discuss the relations between testing time and reliability and between duration following failure fixing and reliability are studied in this paper. The release time making the testing cost to be minimum is determined through studying the cost for each condition. Also, the release time is determined depending on the conditions of the specified reliability. The optimum release time is determined by simultaneously studying optimum release time issue that determines both the cost related time and the specified reliability related time.

  • PDF

A Study on Optimal Software Maintenance Policies with Warranty Period (보증기기간을 고려한 최적 소프트웨어의 보전정책 연구)

  • Nam, Kyung-H.;Kim, Do-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.2
    • /
    • pp.170-178
    • /
    • 2011
  • In general, a software fault detection phenonenon is described by a software reliability model based on a nonhomogeneous Poisson process(NHPP). In this paper, we propose a software reliability growth model considering the differences of the software environments in both the testing phase and the operational phase. Also, we consider the problem of determining the optimal release time and the optimal warranty period that minimize the total expected software cost which takes account of periodic software maintenance(e.g. patch, update, etc). Finally, we analyze the sensitivity of the optimal release time and warranty period based on the fault data observed in the actual testing process.