• Title/Summary/Keyword: Reliability Acceptance Sampling Plan

Search Result 15, Processing Time 0.024 seconds

Economic Reliability Group Acceptance Sampling Based on Truncated Life Tests Using Pareto Distribution of the Second Kind

  • Aslam, Muhammad;Mughal, Abdur Razzaque;Hanif, Muhammad;Ahmad, Munir
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.5
    • /
    • pp.725-731
    • /
    • 2010
  • Economic Reliability test plans(ERTP) are proposed considering that the life time of the submitted items follow the Pareto distribution of the second kind. For various specified acceptance number, sample size and producer's risk, a minimum test termination time is obtained. A comparison of proposed plan has been made with the existing plan developed by Aslam et al. (2010). The results are explained by tables and example.

Reliability Acceptance Sampling Plans with Sequentially Supplied Samples (시료가 축차적으로 공급되는 상황에서의 신뢰성 샘플링검사 계획)

  • Koo, Jung-Seo;Kim, Min;Yum, Bong-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.1
    • /
    • pp.76-85
    • /
    • 2007
  • A reliability acceptance sampling plan (RASP) consists of a set of life test procedures and rules for eitheraccepting or rejecting a collection of items based on the sampled lifetime data. Most of the existing RASPs areconcerned with the case where test items are available at the same time. However, as in the early stage ofproduct development, it may be difficult to secure test items at the same time. In such a case, it is inevitable toconduct a life test using sequentially supplied samples.In this paper, it is assumed that test items are sequentially supplied, the lifetimes of test items follow anexponential disthbution, failures are monitored continuously, arrival times of test items are known, and thenumber of test items at each arrival time is given. Under these assumptions, RASPs are developed by deter-mining the test completion time and the critical value for the maximum likelihood estimator of the mean lifetimesuch that the producer and consumer risks are satisfied. Then, the developed plans are compared to thetraditional Type-I censored RASPs in terms of the test completion time. Computational results indicate that thetest completion time of the developed RASP is shorter than that of the traditional Type-I censored plan in mostcases considered. It is also found that the superiority of the developed RASP becomes more prominent as theinter-arrival times of test items increase and/or the total number of test items gets larger.

A Reliability Sampling Plan Based on Progressive Interval Censoring Under Pareto Distribution of Second Kind

  • Aslam, Muhammad;Huang, Syuan-Rong;Chi, Hyuck-Jun;Ahmad, Munir;Rasool, Mujahid
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.2
    • /
    • pp.154-160
    • /
    • 2011
  • In this paper, a reliability sampling plan under progressively type-1 interval censoring is proposed when the lifetime of products follows the Pareto distribution of second kind. We use the maximum likelihood estimator for the median life and its asymptotic distribution. The cost model is proposed and the design parameters are determined such that the given producer's and the consumer's risks are satisfied. Tables are given and the results are explained with examples.

Bilevel-programming based failure-censored ramp-stress ALTSP for the log-logistic distribution with warranty cost

  • Srivastava, P.W.;Sharma, D.
    • International Journal of Reliability and Applications
    • /
    • v.17 no.1
    • /
    • pp.85-105
    • /
    • 2016
  • In this paper accelerated life testing is incorporated in quality control technique of acceptance sampling plan to induce early failures in high reliability products.Stress under accelerated condition can be applied in constant-stress, step-stress and progressive-stress or combination of such loadings. A ramp-stress results when stress is increased linearly (from zero) with time. In this paper optimum failure-censored ramp-stress accelerated life test sampling plan for log-logistic distribution has been formulated with cost considerations. The log-logistic distribution has been found appropriate for insulating materials. The optimal plans consist in finding optimum sample size, sample proportion allocated to each stress, and stress rate factor such that producer's and consumer's interests are safeguarded. Variance optimality criterion is used when expected cost per lot is not taken into consideration, and bilevel programming approach is used in cost optimization problems. The methods developed have been illustrated using some numerical examples, and sensitivity analyses carried out in the context of ramp-stress ALTSP based on variable SSP for proportion nonconforming.

Reliability analysis methods to one-shot device (일회용품의 신뢰성분석 방안)

  • Baik, Jaiwook
    • Industry Promotion Research
    • /
    • v.7 no.4
    • /
    • pp.1-8
    • /
    • 2022
  • There are many one-shot devices that are used once and thrown away. One-shot devices such as firecrackers and ammunition are typical, and they are stored for a while after manufacture and then disposed of after use when necessary. However, unlike general operating systems, these one-shot devices have not been properly evaluated. This study first examines what the government does to secure reliability in the case of ammunition through ammunition stockpile reliability program. Next, in terms of statistical analysis, we show what the reliability analysis methods are for one-shot devices such as ammunition. Specifically, we show that it is possible to know the level of reliability if sampling inspection plan such as KS Q 0001 which is acceptance sampling plan by attributes is used. Next, non-parametric and parametric methods are introduced as ways to determine the storage reliability of ammunition. Among non-parametric methods, Kaplan-Meier method can be used since it can also handle censored data. Among parametric methods, Weibull distribution can be used to determine the storage reliability of ammunition.