• Title/Summary/Keyword: Release speed

Search Result 264, Processing Time 0.028 seconds

An Efficient Bandwidth Utilization Mechanism for the IEEE 802.6 MAN (IEEE 802.6 MAN을 위한 효율적 대역폭 사용 메카니즘)

  • 강문식;유시훈;조명석;이상배
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.3
    • /
    • pp.310-317
    • /
    • 1993
  • This paper presents a mechanism for improving performance of the IEEE 802.6 MAN(Metropolitan Area Network), a dual-bus structured high-speed communication network, by a more efficient use of bandwidth. The MAN protocol is able to handle various traffic and offers better transmission speed than the conventional LAN, but the unidirectional bus structure and propagation delay of request bits results in unfairness since higher nodes use more bandwidth. As the number of stations and the distances between them are increased, the problem becomes mere serious. As a solution, this paper presents a method that every station enables to identify the used slots, and that a specified class denoted 'erasure station' has with the functions of destination release, slot reuse. As a result, it is export to improve network bandwidth values of each station and the throughput and delay time was analytically analyzed, and it is shown that according to computer simulation results, this mechanism improves the network performance.

  • PDF

Hybrid Scheduling Algorithm for Guaranteeing QoS of Real-time Traffic in WCDMA Enhanced Uplink (WCDMA 개선된 상향링크에서 실시간 트래픽의 서비스 품질을 보장하는 하이브리드 스케줄링 알고리즘)

  • Kang, You-Jin;Kim, Jun-Su;Sung, Dan-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1106-1112
    • /
    • 2007
  • As a demand for high speed uplink packet services increases, the WCDMA enhanced uplink, also known as high speed uplink packet access (HSUPA), has been specified in release 6 by 3GPP. This HSUPA will provide various types of multimedia services, such as real-time video streaming, gaming, VoIP, and FTP. Generally, the performance of HSUPA is dominated by scheduling policy. Therefore, it is required to design a scheduling algorithm considering the traffic characteristics to provide QoS guaranteed services in various traffic environments. In this paper, we propose a scheduling algorithm considering the traffic characteristics to guarantee QoS in a mixed traffic environment. Finally, the performance of the proposed scheduling algorithm is evaluated in terms of average packet delay, packet delay jitter, and system throughput using a system level simulator.

Design and testing of the KC-100 Spin Recovery Parachute System (SRPS)

  • Lee, Dong-Hun;Nho, Byung-Chan;Kang, Myung-Kag;Kang, Kyung-Woo;Lee, Ju-Ha;Kim, Su-Min;Kwon, Young-Suk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.117-125
    • /
    • 2012
  • This paper presented the design of SRPS, ground function test, and the deployment test on a high speed taxi of KC-100 airplane. KAI has developed a spin recovery system in collaboration with Airborne Systems for KC-100 general aviation airplane. Spin mode analysis, rotary balance and forced oscillation tests were performed to obtain the rotational, dynamic derivatives in the preliminary design phase. Prior to the detailed design process of SRPS, approximations for initial estimation of design parameters- fineness ratio, parachute porosity, parachute canopy filling time, and deployment method- were considered. They were done based on the analytical disciplines such as aerodynamics, structures, and stability & control. SRPS consists of parachute, tractor rocket assembly for deployment, attach release mechanism (ARM) and cockpit control system. Before the installation of SRPS in KC-100 airplane, all the control functions of this system were demonstrated by using SBTB(System Breakout Test Box) in the laboratory. SBTB was used to confirm if it can detect faults, and simulate the firing of pyrotechnic devices that control the deployment and jettison of SRPS. Once confirmed normal operation of SRPS, deployment and jettison of parachute on the high speed taxiing were performed.

Power Smoothening Control of Wind Farms Based on Inertial Effect of Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Kang, Jong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1096-1103
    • /
    • 2014
  • This paper proposes a novel strategy for attenuating the output power fluctuation of the wind farm (WF) in a range of tens of seconds delivered to the grid, where the kinetic energy caused by the large inertia of the wind turbine systems is utilized. A control scheme of the two-level structure is applied to control the wind farm, which consists of a supervisory control of the wind farm and individual wind turbine controls. The supervisory control generates the output power reference of the wind farm, which is filtered out from the available power extracted from the wind by a low-pass filter (LPF). A lead-lag compensator is used for compensating for the phase delay of the output power reference compared with the available power. By this control strategy, when the reference power is lower than the maximum available power, some of individual wind turbines are operated in the storing mode of the kinetic energy by increasing the turbine speeds. Then, these individual wind turbines release the kinetic power by reducing the turbine speed, when the power command is higher than the available power. In addition, the pitch angle control systems of the wind turbines are also employed to limit the turbine speed not higher than the limitation value during the storing mode of kinetic energy. For coordinating the de-rated operation of the WT and the storing or releasing modes of the kinetic energy, the output power fluctuations are reduced by about 20%. The PSCAD/EMTDC simulations have been carried out for a 10-MW wind farm equipped with the permanent-magnet synchronous generator (PMSG) to verify the validity of the proposed method.

INVESTIGATION OF RUNNING BEHAVIORS OF AN LPG SI ENGINE WITH OXYGEN-ENRICHED AIR DURING START/WARM-UP AND HOT IDLING

  • Xiao, G.;Qiao, X.;Li, G.;Huang, Z.;Li, L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.437-444
    • /
    • 2007
  • This paper experimentally investigates the effects of oxygen-enriched air (OEA) on the running behaviors of an LPG SI engine during both start/warm-up (SW) and hot idling (HI) stages. The experiments were performed on an air-cooled, single-cylinder, 4-stroke, LPG SI engine with an electronic fuel injection system and an electrically-heated oxygen sensor. OEA containing 23% and 25% oxygen (by volume) was supplied for the experiments. The throttle position was fixed at that of idle condition. A fueling strategy was used as following: the fuel injection pulse width (FIPW) in the first cycle of injection was set 5.05 ms, and 2.6 ms in the subsequent cycles till the achieving of closed-loop control. In closed-loop mode, the FIPW was adjusted by the ECU in terms of the oxygen sensor feedback. Instantaneous engine speed, cylinder pressure, engine-out time-resolved HC, CO and NOx emissions and excess air coefficient (EAC) were measured and compared to the intake air baseline (ambient air, 21% oxygen). The results show that during SW stage, with the increase in the oxygen concentration in the intake air, the EAC of the mixture is much closer to the stoichiometric one and more oxygen is made available for oxidation, which results in evidently-improved combustion. The ignition in the first firing cycle starts earlier and peak pressure and maximum heat release rate both notably increase. The maximum engine speed is elevated and HC and CO emissions are reduced considerably. The percent reductions in HC emissions are about 48% and 68% in CO emissions about 52% and 78%; with 23% and 25% OEA, respectively, compared to ambient air. During HI stage, with OEA, the fuel amount per cycle increases due to closed-loop control, the engine speed rises, and speed stability is improved. The HC emissions notably decrease: about 60% and 80% with 23% and 25% OEA, respectively, compared to ambient air. The CO emissions remain at the same low level as with ambient air. During both SW and HI stages, intake air oxygen enrichment causes the delay of spark timing and the increased NOx emissions.

Development of Leg Stiffness Controllable Artificial Tendon Actuator (LeSATA®) Part I - Gait Analysis of the Metatarsophalangeal Joint Tilt Angles Soonhyuck - (하지강성 가변 인공건 액추에이터(LeSATA®)의 개발 Part I - Metatarsophalangeal Joint Tilt Angle의 보행분석 -)

  • Han, Gi-Bong;Eo, Eun-Kyung;Oh, Seung-Hyun;Lee, Soon-Hyuck;Kim, Cheol-Woong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.153-165
    • /
    • 2013
  • The established gait analysis studies have regarded leg as one single spring. If we can design a knee-ankle actuating mechanism as a primary actuator for supporting knee extension, it might be possible to revolutionary store or release elastic strain energy, which is consumed during the gait cycle, and as a result leg stiffness is expected to increase. An ankle joint actuating mechanism that stores and releases the energy in ankle joint is expected to support and solve excessive artificial leg stiffness caused by the knee actuator (primary actuator) to a reasonable extent. If unnecessary kinematic energy is released with the artificial speed reduction control designed to prevent increase in gait speed caused by increase in time passed, it naturally brings question to the effectiveness of the actuator. As opposed to the already established studies, the authors are currently developing knee-ankle two actuator system under the concept of increasing lower limb stiffness by controlling the speed of gait in relative angular velocity of the two segments. Therefore, the author is convinced that compensatory mechanism caused by knee actuating must exist only in ankle joint. Ankle joint compensatory mechanism can be solved by reverse-examining the change in metatarso-phalangeal joint (MTPJ) tilt angle (${\theta}_1=0^{\circ}$, ${\theta}_2=17^{\circ}$, ${\theta}_3=30^{\circ}$) and the effect of change in gait speed on knee activity.

Railway Underground Crossing Method Using PC Slab (직접 PC슬래브설치를 통한 철도지하횡단 공법의 적용 연구)

  • Min, Kyung-Ju;Lee, Bang-Woo;Park, Byung-Yong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2439-2449
    • /
    • 2011
  • Existing grade crossings between railway and roadway area gradually changed to grade separation systems by the law. In the case of new roadway construction which crosses railways, it shall be grade separation system in principle. With the railway underground crossing method, many practices have been developed which can minimize rail displacements and avoid rail release. With these methods, the effects to the train can be reduced. The underground crossing methods can be identified as open-cut methods and non open-cut methods. The open-cut methods include temporary support methods and special rail construction methods. Also the non open-cut methods includes pipe roof methods, front jacking methods, messer shield methods, NTR methods and JES methods. Among these, the most suitable method is applied considering safety, economy, class of each rail system (train passing frequency and velocity), etc. In the non open-cut methods, the cost and duration shall be increased to keep existing rail system during construction. In the open-cut methods which use plate girders, the rail speed shall be restricted due to the displacement and vibration of the girder. In this study new grade separation methods were developed. With this method, the safety during construction can be increased. This method refines temporary support methods, but pc slab girder with huge stiffness is applied instead of plate girders. With this method, the rail displacement can be reduced and higher safety can be obtained during construction. Also construction cost and duration can be minimized because the temporary work and the overburden soil depth can be reduced.

  • PDF

A Case Study on The Strategy and Way to Promote IT Collaboration between SMEs and Large Firms in The Heavy Industries (중공업 부문의 대중소 IT 협업 전략과 추진에 관한 사례연구)

  • Kim, Jung-Mo;Cho, Chi-Woon
    • IE interfaces
    • /
    • v.25 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The challenges facing manufacturing companies today span across the industry, independent of company size or product. Especially, big manufacturers must overcome these challenges, and information technology (IT) collaboration with small and medium enterprises (SMEs) will play a major role in this effort. In this research, the strategy and way to promote IT collaboration between SMEs and large firms in heavy industries are proposed. A pre-consultation was performed to derive the strategy and way for the collaboration, and an IT collaboration system was developed reflection the results of pre-consultation. The IT collaboration system consists of two parts. One is ERP based on BPM for SMEs to standardize and visualize the entire business process from order placement to release. This system also provides their parent company with visibility into the status of orders and user can easily access the system on the web at a low price through cloud computing service. The other is interface part for data changes between large firms and SMEs. Thus far, this paper demonstrates the importance of strategy for the collaboration, and the applicability of IT collaboration system to elevate the speed and efficiency of business.

DNSs of the Ignition of a Lean PRF/Air Mixture under RCCI/SCCI Conditions: A Comparative Study (RCCI/SCCI 조건하에서 희박 PRF/공기 혼합물의 점화에 관한 직접수치모사를 이용한 비교 연구)

  • Luong, Minh Bau;Yu, Kwang Hyeon;Yoo, Chun Sang
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.179-182
    • /
    • 2014
  • A comparative DNS study of the ignition characteristics of dual-fueled reactivity controlled compression ignition (RCCI) and stratification charge compression ignition (SCCI) is investigated using a 116-species reduced primary reference fuel (PRF) mechanism. In the RCCI combustion, two PRF fuels (n-heptane and iso-octane) with opposite autoignition characteristics are separatedly supplied and in-cylinder blended such that spatial variations in fuel reactivity, fuel concentration and temperature are achieved. In the SCCI combustion, however, just a single fuel (PRF50) is used such that only fuel concentration and temperature inhomoginieties are obtained. Because three factors, rather than only two as in SCCI combustion, govern the overall RCCI combustion, combustion timing and combustion duration or heat release rate of RCCI combustion are flexibly and effectively controlled. It is found that the overall RCCI combustion occurs much earlier and its combustion duration is longer compared to SCC combustionI. Moreover, the negative temperature coefficient (NTC) has a positive effect on enhancing RCCI combustion by inducing a shorter combustion timing and a longer combustion duration as a result of the occurrence of a predominant low-speed deflagration-combustion mode.

  • PDF

Flame Transfer Function Measurement in a Premixed Combustor (예혼합 연소기에서의 화염 전달 함수 측정)

  • Kim, Dae-Sik;Kim, Ki-Tae;Chen, Seung-Bae;Lee, Jong-Guen;Santavicca, Domenic
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • An experimental study of the flame response in a turbulent premixed combustor has been conducted with room temperature, atmospheric pressure inlet conditions using premixed natural gas. The fuel is premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. Therefore the observed flame response is only the result of the imposed velocity fluctuations, which are produced using a variable speed siren. Measurements are made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function as a function of the modulation frequency. Of particular interest is the effect of flame structure on the flame response predictions and measurements. The results show that both the gain and the phase of flame transfer function are closely associated with the flame length and structure, which is dependent upon the upstream flow perturbation as well as equivalence ratio in the current study.

  • PDF