• 제목/요약/키워드: Release profile

검색결과 172건 처리시간 0.025초

염산 딜티아젬의 방출을 제어하기 위한 삼중 폴리머 매트릭스 시스템 (A Ternary Polymeric Matrix System for Controlled Drug Delivery of Highly Soluble Drug with High Drug Loading : Diltiazem Hydrochloride)

  • 김현조;레자 파시히
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권1호
    • /
    • pp.19-25
    • /
    • 2001
  • The purpose of this study was to use a ternary polymeric matrix system for high drug loading of a highly soluble drug for controlled release delivery. The controlled drug delivery of diltiazem HCl (solubility > 50% in water at $25^{\circ}C$) with high loading dose (the final loading dose of drug was 34%) from a ternary polymeric matrix (gelatin, pectin, HPMC) was successfully accomplished. This simple monolithic system with 240 mg drug loading provided near zero-order release over a 24 hour-period by which time the system was completely dissolved. The release kinetics of diltiazem HCl tablet with high loading dose from the designed ternary polymeric system was dependent on the ratios of HPMC : pectin binary mixture. The release rate increased as pectin : HPMC ratio were increased. Swelling behavior of the ternary system and the ionic interaction of formulation components with cationic diltiazem molecule appear to control drug diffusion and the release kinetics. Comparable release profiles between commercial product and the designed system were obtained. The binding study between gelatin with diltiazem HCl showed the presence of two binding sites for drug interaction with subsequent controlled diffusion upon swelling. This designed delivery system is easy to manufacture and drug release behavior is highly reproducible and offers advantages over the existing commercial product.

  • PDF

약물지연방출을 위한 스테레오컴플렉스 PLA 원반형 마이크로입자 (Stereocomplex Poly(lactic acid) Discoidal Microparticles for Sustained Drug Release)

  • 박채원;박상효;김우철;기재홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권1호
    • /
    • pp.62-66
    • /
    • 2020
  • Controlled drug release is important for effective treatment of cancer. Poly(DL-lactide-co-glycolide) acid (PLGA) is a Food and Drug Administration (FDA) approved polymer and have been extensively studied as drug delivery carriers with biodegradable and biocompatible properties. However, PLGA drug delivery carriers are limited due to the initial burst release of drug. Certain drugs require an early rapid release, but in many cases the initial rapid release can be inefficient, reducing therapeutic effects and also increasing side effects. Therefore, sustained release is important for effective treatment. Poly Lactic Acid stereo complex (PLA SC) is resistant to hydrolysis and has high stability in aqueous solutions. Therefore, in this work, PLGA based discoidal polymeric particles are modified by Poly Lactic Acid stereocomplex (PLAsc DPPs). PLAsc DPPs are 3 ㎛ in diameter, also showing a relatively sustained release profile. Fluorescein 5(6)-isothiocyanate (FITC) released from PLAsc DPPs was continuously observed until 38 days, which showed the initial release of FITC from PLAsc DPPs was about 3.9-fold reduced as compared to PLGA based DPPs at 1 hour.

Preparation and Properties of Alginate/Polyaspartate Composite Hydrogels

  • Lei, Jing;Kim, Ji-Heung;Jeon, Young-Sil
    • Macromolecular Research
    • /
    • 제16권1호
    • /
    • pp.45-50
    • /
    • 2008
  • This study examined the swelling behavior and in vitro release of a model drug, tetracycline-HCl, from alginate and alginate-polyaspartate (Alg-PASP) composite gel beads. The alginate and Alg-PASP composite beads were prepared using an ionic crosslinking method with aqueous $Ca^{2+}$. Their microporous morphology was observed by scanning electron microscopy. The swelling ratio of the beads in different media varied according to their composition, cross-linking density ($Ca^{2+}$ concentration), and pH of the aqueous medium. The in vitro release experiment of the tetracycline-HCl encapsulated beads in different media suggests that the release of the drug is governed mainly by the swelling properties of the polymer network. The presence of PASP was found to significantly influence the swelling properties and drug release profile.

Controlled Release and Stabilization of Cefaclor from Alginate-based Matrices for Oral Delivery Design

  • Bak, So-Im;Lee, Jue-Yeon;Song, Hye-Won;Hwang, Jeong-Hyo;Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권4호
    • /
    • pp.327-330
    • /
    • 2002
  • Alginate based polymeric matrices were designed for controlled release and stabilization of cefaclor in gastrointestinal fluid. Cefaclor is known to be acid stable and subjected to be degraded at neutral and alkaline pHs. In order to achieve an effective release profile of cefaclor in gastrointestinal tract, a particular strategy in dosage form design should be required from the view point of maintaining its activity. The amphiphilic nature of cefaclor allowed its controlled release using ionic polymers based on ionic interaction between the drug and polymers. The thrust of this study was to develop a technique that delivers cefaclor keeping effective release rate in the intestinal tract. Considering the fast degradation of cefaclor in the intestinal fluid, the matrices were designed to release surplus amount of cefaclor. The alginate based matrices demonstrated increase in release rate in the simulated intestinal fluid, which was favorable to compensate the degraded portion of cefaclor. In addition, stabilization of cefaclor in the intestinal fluid was obtained by employing citric acid that provides an local acidic environment. The matrices might be valuably used for the development of an oral cefaclor dosage form.

호흡기 배상세포에서 폴리양이은성 펩티드에 의해 야기되는 뮤신유리 억제 현상의 특이성 규명 Specificity in the Inhibition of Mucin Release from Airway Goblet Cells by Polycationic Peptides (Specificity in the Inhibition of Mucin Release from Airway Goblet Cells by Polycationic Peptides)

  • 이충재
    • Biomolecules & Therapeutics
    • /
    • 제9권3호
    • /
    • pp.218-223
    • /
    • 2001
  • In the present study, we intended to investigate whether polycationic peptides including poly-L-lysine (PLL) and poly-L-arginine (PLA) specifically inhibit the mucin release and do not affect significantly the release of the other releasable glycoproteins with less molecular weight than mucin's from cultured airway goblet cells. Confluent primary hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with 3H-glucosamine for 24 hr and chased for 30 min in the presence of varying concentrations of either poly-L-arginine (PLA) or poly-L-lysine (PLL) to assess the effects on 3H-mucin release and on the total elution profile of the treated culture medium. The results were as follows : (1) PLL 78,000, PLL 9,600 and PLA 8,900 inhibited mucin release in a dose-dependent manner; (2) These polycationic peptides did not inhibit the release of the other releasable glycoproteins with less molecular weights than mucin's. We conclude that these polycationic peptides 'specifically'inhibit mucin release from airway goblet cells. This finding suggests that these polycationic peptides might be used as a specific airway mucin-regulating agent.

  • PDF

Preparation and In Vivo Evaluation of Huperzine A-Loaded PLGA Microspheres

  • FU XU-DONG;GAO YONG-LIANG;PING QI-LENG;Ren Tang
    • Archives of Pharmacal Research
    • /
    • 제28권9호
    • /
    • pp.1092-1096
    • /
    • 2005
  • Huperzine A-loaded microspheres composed of poly(D,L-lactide-co-glycolide) were prepared by an O/w emulsion solvent evaporation method. The characterization of the microspheres such as drug loading, size, shape and release profile was described. The in vitro release in the initial 7 days was nearly linear with $10\%$ released per day. Thereafter drug release rate became slow gradually and about $90\%$ drug released at day 21. The in vitro release rate determined by dialysis bag method had a good correlation with the in vivo release rate. Huperzine A aqueous solution was intramuscularly injected (i.m.) at 0.4mg/kg and microspheres were intra­muscularly injected at 8.4 mg eq huperzine A/kg in rats. The maxium plasma concentration $(C_{max})$ after i.m. microspheres was only $32\%$ of that after i.m. solution. Drug in plasma could be detectd until day 14 and about $5\%$ of administered dose was residued at the injection site at day 14. The relative bioavailability of huperzine A microspheres over a period of 14 days was $94.7\%$. Inhibition of acyecholinesterase activity (AchE) in rat's cortex, hippocampus and striatum could sustain for about 14 days. In conclusion, huperzine A-loaded microspheres possessed a prolonged and complete drug release with significant inhibition of AchE for 2 weeks in rats.

Effect of Hydrophilic-Lipophilic Balance of Drugs on Their Release Behavior from Amphiphilic Matrix

  • Yoo, Young-Tai;Shin, Hyun-Woo;Nam, Byung-Guk
    • Macromolecular Research
    • /
    • 제11권4호
    • /
    • pp.283-290
    • /
    • 2003
  • Organic drugs including aspirin, omeprazole, and naproxen with three different levels of octanol/water partition coefficient were examined for their release behavior from the amphiphilic PCL-b-PEO-b-PCL (PCEC) matrix. Scanning electron micrograph (SEM) of PCEC illustrated a well defined two-phase morphology consisted of dispersed poly(ethylene oxide) (PEO) domain and continuous polycaprolactone (PCL) phase. Differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) experiments veri tied that three model drugs are dissolved as a molecular dispersion in PCEC matrix. The release of hydrophilic aspirin closely followed the water absorption profile of the matrix indicating that its major fraction is present in PEO domain. However, substantial amount of aspirin present in less hydrophilic region displayed discontinuous biphasic release pattern. In the case of omeprazole with intermediate hydrophobicity consistent release behavior was observed for a period of 24 hrs after the rapid liberation of ca. 10% of the drug presumably partitioned in PEO phase. It was ascribed to the fact that the progressive hydration of PCEC matrix gradually increased the chance of drug/water exposure to compensate the exhaustion of device. Naproxen with the highest octanol/water distribution coefficient among three model drugs exhibited a limited release of 35% for 24 hrs. Finally, hydroxypropyl methylcellulose phthalate (HPMCP)/PCEC blend matrix demonstrated an accelerated and quantitative release of hydrophobic naproxen by generating high porosity and thereby expanding polymer/water interface.

경피흡수제형의 in vitro 약물방출실험을 위한 연속확산 장치의 개발 (Development of Automated Diffusion Cell for Determining In Vitro Drug Release from Transdermal Device)

  • 변영로;최영권;정서영;김영하
    • 약학회지
    • /
    • 제34권3호
    • /
    • pp.161-165
    • /
    • 1990
  • An automated, simple, and reliable method was developed for determining in vitro drug release rate from transdermal delivery dosage forms. The patch is held in position in the heating block by sandwiching it between the middle plate and the bottom plate of diffusion cell. The dissolution profile of the commercially available transdermal scopolamine patch was determined over a 72-h period, and the results were compared with those obtained with other methods; paddle-over-disk method, reciprocating method, and diffusion cell method. It was demonstrated that the flow-through method is equivalent in terms of release rate profile and accumulated released drug amount over the lifetime of the dosage form tested. Also this method is simple, reliable and reproducible. Therefore, this technique can be used in a quality control for assuring product uniformity.

  • PDF

Formulation and Evaluation of Sustained Release Preparation of Ibuprofen Fast-Disintegrating Tablet (FDT)

  • Kim, Kwang-Hyeon;Park, Jun-Bom;Kang, Joo-Hyung;Lee, Kun-Hee;Kang, Chin-Yang
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권1호
    • /
    • pp.51-57
    • /
    • 2011
  • The objective of this study was to enhance the utilitization of Ibuprofen (IBU) by introducing the fast-disintegrating tablet (FDT) form. Presently, IBU is being widely used as a tablet or syrup form. But in contrast to these two formulations, IBU as FDT is not only convenient but also increases the control over the time release of the drug, noted by using Alginate beads. This study was carried out with Sodium Alginate and IBU at the ratios of 1:0, 1:0.5, 1:1, and 1:2 in order to produce a series of beads with different ratios. During the drying process of the beads, talc was added in beads to compare the effects with and without the talc. The final product was scanned with SEM imaging to determine the difference in the surface of the beads. The parameters assessed were the diameter, content assay, dissolution test and effectiveness of time-release. Direct compression method was used to prepare FDT containing IBU bead. The properties of FDT, such as hardness, disintegration time, were investigated. The dissolution profiles of FDT were tested using KP dissolution apparatus 1 (basket method). The results suggest addition of talc and drying the beads made the surface smooth and less vulnerable to clutter into chunks. The size of beads was less than 300 ${\mu}m$ which did not create a sandy feeling in the mouth. Thus, the beads formulation model made the sustained release of the drug possible, the hardness of FDT (1.25~1.50 $Kg/cm^2$) was acceptable and all the values of dissolving period were less than 30 seconds. The dissolution profile of FDT was same as that of IBU bead. The efficient dissolution profile and low price of IBU bead containing Sodium Alginate, the FDT formulation prepared from IBU bead can save the expenses and can improve the convenience of application of this drug.

멜록시캄 함유 poly (D,L-lactic acid) 미소립자의 제조 및 평가 (Preparation and Evaluation of Meloxicam-loaded Poly(D,L-lactic acid) Microspheres)

  • 임종섭;오동훈;이동훈;성정훈;유봉규;김정애;우종수;이용복;김세미;최한곤;용철순
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권1호
    • /
    • pp.63-72
    • /
    • 2008
  • Meloxicam-loaded microspheres were prepared with poly(D,L-lactic acid)(PLA) by a solvent-emulsion evaporation method. The morphology, particle size, drug loading capacity, drug entrapment efficiency (EE) and release patterns of drug were investigated in vitro. Various batches of micro spheres with different size and drug content were obtained by changing the ratio of meloxicam to $PLA^{\circ}{\AE}s$ with different molecular weight, PLA concentration in the dispersed phase and stirring rate. Meloxicam crystals on microsphere surface, which were released rapidly and could act as a loading dose, were observed with increasing drug content. The release rate was increased with increase in drug contents and decrease in the molecular weight of PLA. Microspheres prepared with smaller molecular weight produced faster drug release rate. The release rate of meloxicam for long-acting injectable delivery system in vitro, which would aid in predicting in vivo release profile, could be controlled by properly optimizing various factors affecting characteristics of microspheres. Blood concentration-time profile of meloxicam after intramuscular injection of meloxicam-loaded microspheres in rabbits showed possibility of long term application of this system in clinical settings.