• Title/Summary/Keyword: Release pathway

Search Result 334, Processing Time 0.022 seconds

lntracellular $Ca^{2+}$ Mediates Lipoxygenase-induced Proliferation of U-373 MG Human Astrocytoma Cells

  • Kim, Jung-Ae;Chung, Young-Ja;Lee, Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.664-670
    • /
    • 1998
  • The role of intracellular $Ca^{2+}$, in the regulation of tumor cell proliferation by products of arachidonic acid (AA) metabolism was investigated using U-373 MG human as trocytoma cells. Treatment with nordihydroguaiaretic acid (NDGA), a lipoxygenase (LOX) inhibitor, or caffeic acid (CA), a specific 5-LOX inhibitor, suppressed proliferation of the tumor cells in a dose-dependent manner. However, indomethacin (indo), a cyclooxygenase (COX) inhibitor, did not significantly alter proliferation of the tumor cells. At anti-proliferative concentrations, NDGA and CA significantly inhibited intracellular $Ca^{2+}$ release induced by carbachol, a known intracelluar $Ca^{2+}$ agonist in the tumor cells. Exogenous administration of leukotriene $B_4(LTB_4)$, an AA metabolite of LOX pathway, enhanced proliferation of the tumor cells in a concentration-dependent fashion. In addition, $LTB_4$, induced intracelluar $Ca^{2+}$ release. Intracellular $Ca^{2+}$-inhibitors, such as an intracellular $Ca^{2+}$ chelator (BAPTA) and intracellular $Ca^{2+}$-release inhibitors (dantrolene and TMB-8), significantly blocked the LTB4-induced enhancement of cell proliferation and intracellular $Ca^{2+}$ release. These results suggest that LOX activity may be critical for cell proliferation of the human astrocytoma cells and that intracelluar $Ca^{2+}$ may play a major role in the mechanism of action of LOX.

  • PDF

Chitosan Increases the Release of Renal Dipeptidase from Porcine Renal Proximal Tubule Cells

  • Hyun Joong, Yoon;Kim, Young-Ho;Park, Sung-Wook;Lee, Hwanghee-Blaise;Park, Haeng-Soon
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.309-315
    • /
    • 2003
  • Renal dipeptidase (RDPase, membrane dipeptidase, dehydropeptidase 1, EC 3.4.13.19) has been widely studied since it was first purified from porcine kidney brush border membrane. It was reported that RDPase activity in urine samples of acute and chronic renal failure patients decreases. Nitric oxide (NO) is a highly reactive free radical involved in a number of physiological and pathological processes. NO is able to act in a dual mode, leading either to induction of apoptosis or to blunted execution of programmed cell death. NO inhibited the RDPase release from porcine renal proximal tubules, which could be blocked by L-NAME. Chitosan, the linear polymer of D-glucosamine in $\beta$(1\longrightarrow4) linkage, not only reversed the decreased RDPase release by NO but also increased NO production in the proximal tubule cells. The stimulatory effect of NO on RDPase release from proximal tubules in the presence of chitosan must be different from the previously proposed mechanism of RDPase release via NO signaling pathway. Chitosan stimulated the RDPase release in the proximal tubules and increased RDPase activity to 220% and 250% at 0.1% and 1%, respectively. RDPase release was decreased to about 40% in the injured proximal tubules and was recovered in proportion to the increase of chitosan. Chitosan may be useful in recovery of renal function from $HgCl_2$injury.

The Enhancement of Endotoxin-Induced Nitric Oxide Production by Elevation of Glucose Concentration in Macrophage

  • Woo, Hyun-Goo;Jung, Yi-Sook;Baik, Eun-Joo;Moon, Chang-Hyun;Lee, Soo-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.447-454
    • /
    • 1999
  • The production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) are known to be modulated by a variety of factors. Recent study showed that endotoxin-induced NO synthesis and iNOS expression were greatly enhanced by elevation of extracellular glucose concentration in murine macrophages. Although this was suggested to be due to the activation of protein kinase C (PKC) via sorbitol pathway, there was lack of evidence for this speculation. This study was performed to delineate the underlying intracellular mechanisms of glucose-enhancing effect on endotoxin-induced NO production in Raw264.7 macrophages. The levels of NO release induced by lipopolysaccharide (LPS) significantly increased by the treatment of glucose in a concentration dependent manner and also, this effect was observed in LPS-preprimed cells. Concurrent incubation of cells with PKC inhibitors, H-7 or chelerythrine, and LPS resulted in the diminution of NO production regardless of glucose concentration but this was not in the case of LPS-prepriming, that is, chelerythrine showed a minimal effect on the glucose- enhancing effect. PMA, a PKC activator, did not show any significant effect on glucose-associated NO production. Modulation of sorbitol pathway with zopolrestat, an aldose reductase inhibitor, did not affect LPS-induced NO production and iNOS expression under high glucose condition. And also, sodium pyruvate, which is expected to normalize cytosolic $NADH/NAD^+$ ratio, did not show any significant effect at concentrations of up to 10 mM. Glucosamine marginally increased the endotoxin-induced nitrite release in both control and high glucose treated group. 6-diazo-5-oxonorleucine (L-DON) and azaserine, glutamine: fructose- 6-phosphate amidotransferase (GFAT) inhibitors, significantly diminished the augmentation effect of high glucose on endotoxin-induced NO production. On the other hand, negative modulation of GFAT inhibitors was not reversed by the treatment of glucosamine, suggesting the minimal involvement, if any, of glucosamine pathway in glucose-enhancing effect. In summary, these results strongly suggest that the hexosamine biosynthesis pathway and the activation of PKC via sorbitol pathway do not contribute to the augmenting effect of high glucose on endotoxin induced NO production in macrophage-like Raw264.7 cells.

  • PDF

Involvement of Akt in naphthoquinone analog-induced apoptosis in HL -60 cells

  • Kang, Seung-Koo;Mun, Jung-Yee;Kim, Hae-Jong;Chun, Young-Jin;Kim, Mie-Young
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.336.3-337
    • /
    • 2002
  • We previously reported that a synthetic naphthoquinone analog. 2.3-dichloro-5.8-dihydroxy-1, 4-naphthoquinone (NA). effectively induces apoptosis in human leukemic HL-60 cells. However. the cellular mechanism by which NA induces cell death remain unclear. In this study. we show that NA induces activation of capases. release of cytochrome c and upregulation of proapoptotic Bax protein. Futhermore. NA suppressed phosphorylation of Akt and Bad. suggesting that Akt regulates NA-induced apoptosis. Expresson of a dominant negative Akt enhancde NA-induced apoptosis. suggesting that naphthoquinone analog induces apoptosis through activating proapoptotic pathway and by the inactivation of antiapoptotic pathway.

  • PDF

Polyhydroxyamic Acid from 3,3′ - Dihydroxybenzidine and Pyromellitic Dianhydride as a Fire-safe Polymer

  • Park, Seung Koo;Farris, Richard J.;Kantor, Simon W.
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.83-88
    • /
    • 2004
  • In order to assess the potential of the hydroxy-containing polyamic acid (PHAA) synthesized from 3,3'-dihydroxy benzidine and pyromellitic dianhydride for a fire-safe polymer, the cyclization pathway of PHAA has been investigated using a model compound prepared from 2-aminophenol and phthalic anhydride. The reaction was monitored. by $^1{H-nuclear}$ magnetic resonance. N-(2-hydroxyphenyl) phthalamic acid is converted to N-(2-hydroxyphenyl) phthalimide at ca. 175$^{\circ}C$, showing endothermic reaction. The imide structure is rearranged to the benzoxazole structure over ca. $400^{\circ}C$. These results are similar with that of PHAA. According to pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) data, water and carbon dioxide are released during the cyclization and rearrangement reaction. One DMAc molecule is complexed with one carboxyl acid group in PHAA, which accelerates the imidization process to release more easily the flame retardant, water.

Positive and negative regulation of the Drosophila immune response

  • Aggarwal, Kamna;Silverman, Neal
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • Insects mount a robust innate immune response against a wide array of microbial pathogens. The hallmark of the Drosophila humoral immune response is the rapid production of anti-microbial peptides in the fat body and their release into the circulation. Two recognition and signaling cascades regulate expression of these antimicrobial peptide genes. The Toll pathway is activated by fungal and many Gram-positive bacterial infections, whereas the immune deficiency (IMD) pathway responds to Gram-negative bacteria. Recent work has shown that the intensity and duration of the Drosophila immune response is tightly regulated. As in mammals, hyperactivated immune responses are detrimental, and the proper down-modulation of immunity is critical for protective immunity and health. In order to keep the immune response properly modulated, the Toll and IMD pathways are controlled at multiple levels by a series of negative regulators. In this review, we focus on recent advances identifying and characterizing the negative regulators of these pathways.

Important Radionuclides and Their Sensitivity for Ground water Pathway of a Hypothetical Near-Surface Disposal Facility

  • Park, J. W.;K. Chang;Kim, C. L.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.156-165
    • /
    • 2001
  • A radiological safety assessment was performed for a hypothetical near-surface radioactive waste repository as a simple screening calculation to identify important nuclides and to provide insights on the data needs for a successful demonstration of compliance. Individual effective doses were calculated for a conservative ground water pathway scenario considering well drilling near the site boundary. Sensitivity of resulting ingestion dose to input parameter values was also analyzed using Monte Carlo sampling. Considering peak dose rate and assessment time scale, C-14 and T-129 were identified as important nuclides and U-235 and U-238 as potentially important nuclides. For C-14, the dose was most sensitive to Darcy velocity in aquifer The distribution coefficient showed high degree of sensitivity for I-129 release.

  • PDF

Ceramide Induces Cell Death through an ERK-dependent Mitochondrial Apoptotic Pathway in Renal Epithelial Cells

  • Jung, Soon-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.42 no.1
    • /
    • pp.46-54
    • /
    • 2010
  • Ceramide induces cell death in a variety of cell types however, the underlying molecular mechanisms related to renal epithelial cells remain unclear. The present study was undertaken to determine the role of extracellular signal-regulated protein kinase (ERK) in ceramide-induced cell death in renal epithelial cells. An established renal proximal tubular cell line of opossum kidney (OK) cells was used for this research. Ceramide induced apoptotic cell death in these cells. Western blot analysis showed that ceramide induced activation of ERK. The ERK activation and cell death induced by ceramide were prevented by the ERK inhibitor PD98059. Ceramide caused cytochrome C release from mitochondria into the cytosol as well as activation of caspase-3. Both effects were prevented by PD98059. The ceramide-induced cell death was also prevented by a caspase inhibitor. These results suggest that ceramide induces cell death through an ERK-dependent mitochondrial apoptotic pathway in OK cells.

  • PDF

Endoplasmic Reticulum Mediated Necrosis-like Apoptosis of HeLa Cells Induced by Ca2+ Oscillation

  • Hu, Qingliu;Chang, Junlei;Tao, Litao;Yan, Guoliang;Xie, Mingchao;Wang, Zhao
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.709-716
    • /
    • 2005
  • Apoptosis and necrosis are distinguished by modality primarily. Here we show an apoptosis occurred instantly, induced by $300\;{\mu}M$ W-7 ((N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride), inhibitor of calmodulin), which demonstrated necrotic modality. As early as 30 min after W-7 addition, apoptotic (sub-diploid) peak could be detected by fluorescence-activated cell sorter (FACS), “DNA ladders” began to emerge also at this time point, activity of caspase-3 elevated obviously within this period. Absence of mitochondrial membrane potential (MMP) reduction and cytochrome c, AIF (apoptosis inducing factor) release, verified that this rapid apoptosis did not proceed through mitochondria pathway. Activation of caspase-12 and changes of other endoplasmic reticulum (ER) located proteins ascertained that ER pathway mediated this necrosis-like apoptosis. Our findings suggest that it is not credible to judge apoptosis by modality. Elucidation of ER pathway is helpful to comprehend the pathology of diseases associated with ER stress, and may offer a new approach to the therapy of cancer and neurodegenerative diseases.

Study on Combustion Characteristics of H2/CO Synthetic Gas (H2/CO 합성가스의 연소 특성에 관한 연구)

  • Kim, Tae-Kwon;Park, Jeong;Cho, Han-Chang
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.689-698
    • /
    • 2008
  • Numerical study is conducted to predict effects of radiative heat loss and fuel composition in synthetic gas diffusion flame diluted with $CO_2$. The existing reaction models in synthetic gas flames diluted with $CO_2$ are evaluated. Numerical simulations with and without gas radiation, based on an optical thin model, are also performed to concrete impacts on effects of radiative heat loss in flame characteristics. Importantly contributing reaction steps to heat release rate are compared for synthetic gas flames with and without $CO_2$ dilution. It is also addressed that the composition of synthetic gas mixtures and their radiative heat losses through the addition of $CO_2$ modify the reaction pathways of oxidation diluted with $CO_2$.