Browse > Article
http://dx.doi.org/10.5322/JES.2008.17.6.689

Study on Combustion Characteristics of H2/CO Synthetic Gas  

Kim, Tae-Kwon (School of Mechanical & Automotive Engineering, Keimyung University)
Park, Jeong (School of Mechanical Engineering, Pukyong National University)
Cho, Han-Chang (Energy Team, Research Institute of Industrial Science and Technology)
Publication Information
Journal of Environmental Science International / v.17, no.6, 2008 , pp. 689-698 More about this Journal
Abstract
Numerical study is conducted to predict effects of radiative heat loss and fuel composition in synthetic gas diffusion flame diluted with $CO_2$. The existing reaction models in synthetic gas flames diluted with $CO_2$ are evaluated. Numerical simulations with and without gas radiation, based on an optical thin model, are also performed to concrete impacts on effects of radiative heat loss in flame characteristics. Importantly contributing reaction steps to heat release rate are compared for synthetic gas flames with and without $CO_2$ dilution. It is also addressed that the composition of synthetic gas mixtures and their radiative heat losses through the addition of $CO_2$ modify the reaction pathways of oxidation diluted with $CO_2$.
Keywords
$CO_2$ dilution; Heat release rate; Oxidation reaction pathway; Radiative heat loss; Synthetic gas;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fotache C. G., Tan Y., Sung C. J., Law C. K., 2000, Ignition of CO/$H_{2}$/$N_{2}$ versus heated air in counterflow: experimental and modeling results, Combust Flame., 120, 417-26   DOI   ScienceOn
2 Ju Y., Guo H., Maruta K., Liu F., 1997, On the extinction limit and flammabiliy limit non-adiabatic stretched methane-air premixed flames, J. Fluid Mech., 342, 315-34   DOI   ScienceOn
3 Chellian H. K., Law C. K., Ueda T., Smooke M. D., Williams F. A., 1990, An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane-airnitrogen diffusion flames, Proc. Combust. Inst., 23, 503-511
4 Park J., Park J. S., Kim J. S., Kim S. C., Kim T. K., 2005, A study on H2-Air counterflow Flames in highly preheated air diluted with CO$_{2}$, Energy Fuel., 19, 2254-2260   DOI   ScienceOn
5 http://www.me. berkeley.edu/gri_mech
6 Lutz A. E., Kee R. J., Grcar J. F., Rupley F. M., 1997, A fortran program for computing opposed-flow diffusion flames, Sandia National Laboratories Report., SAND 96-8243
7 Konnov A. A., Drakov I. V., Ruyck J. D., 2002, Nirtic oxide formation in premixed flames of H2+ CO+CO2 and air, Proc. Combust. Inst, 29, 2171-77
8 Kee R. J., Rupley F. M., Miller J. A., 1989, Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemical kinetics, Sandia National Laboratories Report., SAND 89-8009B
9 Park J., Park J. S., Kim H. P., Kim J. S., Kim S., Cho H. C., Cho K. W., Park H. S., 2007, NO emission behavior in oxy-fuel combustion recirculated with carbon dioxide, Energy Fuels., 21, 121-9   DOI   ScienceOn
10 Kee R. J., Miller J. A., Evans G. H., Dixon-Lewis G., 1988, A computational model of the structure and extinction of strained, opposed flow, premixed methane-are flame, Proc. Combust. Inst., 22, 1479-94
11 Ren J-Y., Qin W., Egolopoulos F. N., Tsotsis T. T., 2001, Methane reforming and its potential effect on the efficiency and pollutat emissions of lean methane-air combustion, Chem. Eng. Sci., 56, 1541-9   DOI   ScienceOn
12 Kee R. J., Dixon-Lewis G., Warnatz J., Coltrin M. E., Miller J. A., 1994, A fortran computer code package for the evaluation of gas-phase multi-component transport., Sandia National Laboratories Report., SAND 86-8246
13 Davis S. G., Joshi A. V., Wang H., Egolfopoulos F., 2005, An optimized kinetic model of H$_{2}$/CO combustion, Proc Combust Inst., 30, 1283-92
14 Brown M. J., Mclean I. C., Smith D. B., Taylor S. C., 1996, Markstein lengths of CO/$H_{2}$/air flames, using expanding spherical flames, Proc Combust Inst., 26, 875-81
15 Zsély I. G., Zádor J., Turányi T., 2005, Uncertainty analysis of updated hydrogen and carbon monoxide oxidation mechanisms, Proc Combust Inst., 30, 1273-81
16 Vagelopoupos C. M., Egolfopoulos F. N., 1994, Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane and air, Proc Combust Inst., 25, 1317-23
17 Mclean I. C., Smith D. B., Taylor S. C., 1994, The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction, Proc Combust Inst., 25, 749-57
18 Song X., Guo Z., 2005, A new process for synthesis gas by co-gasifying coal and natural gas. Fuel., 84, 525-31   DOI   ScienceOn
19 Zhao D., Yamashita H., Kitagawa K., Arai N., Furuhata T., 2002, Behaviour and effect on NOx formation of OH radical in methane-air diffusion flame with steam addition, Combust. Flame., 130, 352-360   DOI   ScienceOn
20 Park J., Keel S. I., Yun J. H., Kim T. K., 2007, Effects of addition of electrolysis in methane-air diffusion flame, Int. J. Hydrogen. Energy., 32, 4059-70   DOI   ScienceOn
21 Sun H., Yang S. I., Jomaas G., Law C. K., 2007, High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion, Proc Combust Inst., 31, 439-46
22 Natarajan J., Lieuwen T., Seitzman J., 2007, Laminar flame speeds of $H_{2}$/CO mixtures: effects of CO$_{2}$ dilution, preheat temperature, and pressure, Combust Flame., 151, 104-9   DOI   ScienceOn