• Title/Summary/Keyword: Release force

Search Result 191, Processing Time 0.029 seconds

Axial Stiffness Analysis of a Clutch Diaphragm Spring in Passenger Cars (승용차용 클러치 다이아프램 스프링의 축방향 강성해석)

  • Kim, J.Y.;Kim, J.G.;Yoon, H.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.35-40
    • /
    • 2010
  • This article deals with the numerical analysis results of stiffness of diaphragm spring used in the clutch of a manual transmission. In order to investigate the relationship of the force and displacement in a diaphragm spring, we have established a numerical model of diaphragm spring using a well-known analytic model of Belleville spring and a cantilever beam model for the finger part of diaphragm spring. Using the stress and strain relations of Belleville spring and cantilever beam, we propose the analytic equation of motion of diaphragm spring for the use of a clutch automated actuator in an automated manual transmission. The proposed analytic model represents the typical dynamic characteristics of diaphragm spring along with the release bearing travel. And it is characterized in a closed-form equation, therefore it can be used for the further study of development of actuator and control law of clutch automating mechanism.

Characterizations and Release Behavior of Poly [(R)-3-hydroxy butyrate]-co-Methoxy Poly(ethylene glycol) with Various Block Ratios

  • Jeong, Kwan-Ho;Kwon, Seung-Ho;Kim, Young-Jin
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.418-423
    • /
    • 2008
  • Poly[(R)-3-hydroxy butyrate] (PHB) and methoxy poly(ethylene glycol) (mPEG) were conjugated by the transesterification reaction with tin(II)-ethylhexanoate (Sn(Oct)-II) as a catalyst. Hydrophobic PHB and hydrophilic mPEG formed an amphiphilic block copolymer which was formed with the self-assembled polymeric micelle in aqueous solution. In this study, we tried to determine the optimum ratio of hydrophobic/hydrophilic segments for controlled drug delivery. The particle size and shape of the polymeric micelle were measured by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Their size were 61-102 nm with various block ratios. Griseofulvin was loaded in the polymeric micelle as a hydrophobic model drug. The loading efficiency and release profile were measured by high performance liquid chromatography (HPLC). The model drug in our system was constantly released for 48 h.

Design and Fabrication of a 3 Chopstick Gripper for Microparts (미세 물체 조작을 위한 3젓가락형 집게의 설계 및 제작)

  • 박종규;문원규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1067-1071
    • /
    • 1997
  • A new type of gripper for micrometer-size objects is developed using piezoelectric multi-layer benders. It is composed of three chopsticks, two of which are designed to grip micro-objects. The third one is reserved for helping the two when objects are released from the chopsticks. It is well known that a micro object is much easier to grasp than to release it after holding it. The electrostatic force between the chopsticks and an object is believed to be the main cause of adhesion in a dry environment. The surface tension becomes very important when liquids are present or in a liquid. The third auxiliary chopsticks is introduced to solve there surface effects. All the three chopsticks are made of tungsten wires with sharpened ends by etching. When grasping microparts, the two chopsticks are utilized, and, when releasing them anywhere the parts are located, the third one reduces the electrostatic force between the objects and the chopstick may be to help the other two chopsticks to hold an objects in a desired orientation. We constructed the three chopstick gripoer for micro objects and test their function by holding and releasing an object of a diameter of 100 micrometers. We make use of open loop voltage control. The bender displacement resolution is sub-micrometer. The gripping forces, about tens of mN are obtained. The experiment shows that the third auxiliary chopstick functions effectively.

  • PDF

Design and Performance Validation of Tactile Force Generating Type Eco-pedal to Improve Fuel Economy (연비 향상을 위한 반력 생성형 에코페달의 설계와 성능검증)

  • Kim, Ji Soo;Tak, Tae Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.963-970
    • /
    • 2016
  • This research deals with design and performance validation of eco-pedals that generate tactile pedal force to guide fuel saving driving behavior. For eco-pedal control logic, allowable fuel consumption at given driving speed is calculated based on pre-defined "allowable acceleration", and if the actual fuel consumption exceeds the allowable fuel consumption, then pedal force is activated. Pedal force should be recognizable to driver while not causing unpleasantness, and should not interfere with normal operation of pedal. Reaction forces that increase pedal stiffness abruptly, such as step and ramp shape, turn out to be not suitable due to pedal overshoot after release of reaction force. With this regards, vibration type reaction force is adopted, and its optimal frequency, magnitude and duration is determined through subjective evaluation with consideration to effect to fuel efficiency. Though highway and city driving test, it is demonstrated that fuel efficiency increase of 13% for highway and 15% for city is achieved.

A Study on the Tonic Effects of Ginseng - Effects of Ginseng Saponins on the Rat Heart (인삼의 강장효과에 관한 연구 - 백서 심장에 대한 인삼사포닌의 효과)

  • 김낙두;김충규;김봉기;한병훈;이상섭
    • YAKHAK HOEJI
    • /
    • v.24 no.1
    • /
    • pp.15-25
    • /
    • 1980
  • The investigation is concerned with the action of ginseng saponin on the contractile force in the rat heart and with the elucidation of the mechanism of the action. The effect of total ginseng saponin, ginsenoside Rb$_{1}$ of protopanaxadiol derivatives and ginsenoside Re of protopanaxatriol derivatives on the contractile force in isolated spontaneously beating normal rat heart was investigated. Total ginseng saponin was obtained from white ginseng by the method of Shibata and Namba. Ginsenoside Rb$_{1}$ and ginsenoside Re were isolated by the method of and Han, respectively. Total ginseng saponin exhibited a slight increase of the contractile force. Ginsenoside Rb$_{1}$ increased markedly the contractile force and dose dependent increase in contractile force was observed. However, ginsenoside Re did not increase the contractile force, but it prevented spontaneous decrease of the contractility of the heart. The mixture of the same dose of ginsenoside Rb$_{1}$ and Re showed a slight increase in the contractile force and its effect was similar to that obtained by total ginseng saponin. Pretreatment with propranolol abolished the positive inotropic effect of ginsenoside Rb$_{1}$ and the positive inotropic effect of ginsenoside Rb$_{1}$ was not observed in a reserpinized rat heart. Pretreatment with ginsenoside Re decreased or abolished the positive inotropic effect of epinephrine. Activities of Na+, K+ -ATPase were inhibited by ginsenoside Rb$_{1}$, total ginseng saponin and ginsenoside Re and these inhibitory effects were dose dependent. The results suggest that catecholamine release or inhibition of Na+, K+ -ATPase activities may be involved in the positive inotropic effect of gindenoside Rb$_{1}$. Ginsenoside Re counteracted the positive inotropic effect of ginsenoside Rb$_{1}$.

  • PDF

A Design and Manufacturing of Two Types of Micro-grippers using Piezoelectric Actuators for the Micromanipulation (미세 조작을 위한 압전 구동 집게의 설계 및 제작)

  • 박종규;문원규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.246-250
    • /
    • 2003
  • In this study, two new types of micro-grippers in which micro-fingers are actuated by piezoelectric multi-layer benders and stacks are introduced for the manipulation of micrometer-sized objects. First, we constructed a 3-chopstick-mechanism tungsten gripper, which is composed of three chopsticks: two are designed to grip micro-objects, and tile third is used to help grasp and release the objects through overcoming especially electrostatic force among some surface effects including electrostatic, van der Waals forces and surface tension. Second, a 2-chopstick-mechanism silicon micro-gripper that uses an integrated force sensor to control the gripping force was developed. The micro-gripper is composed of a piezoelectric multilayer bender for actuating the gripper fingers, silicon fingertips fabricated by use of silicon-based micromachining, and supplementary supports. The micro-gripper is referred to as a hybrid-type micro-gripper because it is composed of two main components; micro-fingertips fabricated using micromachining technology to integrate a very sensitive force sensor for measuring the gripping force, and piezoelectric gripper finger actuators that are capable of large gripping forces and moving strokes. The gripping force signal was found to have a sensitivity of 667 N/V. To the design of each of components of both of the grippers. a systematic design approach was applied, which made it possible to establish the functional requirements and design parameters of the micro-grippers. The micro-grippers were installed on a manual manipulator to assess its performance in tasks such as moving micro-objects from one position to a desired position. The experiment showed that the micro-grippers function effectively.

  • PDF

Analysis of microplastics released from textiles according to filter pore size and fabric weight during washing (세탁 중 세탁물 중량과 여과 기공 크기에 따른 미세플라스틱 분석)

  • Choi, Sola;Kwon, MiYeon;Park, Myung-Ja;Kim, Juhea
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.1
    • /
    • pp.37-45
    • /
    • 2021
  • This study observed the release of microplastics according to washing weights and filtering conditions, measured microplastic generation rates, fiber lengths, and fiber diameters. This study attempted to present data for the development of filters that decrease microplastic generation. For test samples, polyester piled knit fabric (cut-pile) was selected, which currently has the highest amount of consumption in the clothing industry, but can easily cause marine pollution because of its low biodegradability. For test equipment, a drum washer was used and microplastics were collected using two filter pore sizes, 5 ㎛ and 20-25 ㎛. Microplastic fibers weights and lengths were measured. The results of the experiment showed the following: 1) The release of microplastics differed according to the fabric weights and washing process; 2) washing fabric weights showed a differences in the collection amount according to the filter pore size (5 ㎛, 20-25 ㎛); 3) observations of differences in the lengths of the microplastics that occur during the washing process by filter pore size were made. Fibers with shorter lengths appeared with filter pore sizes of 5㎛ in comparison to filter pore sizes of 20-25㎛. The results from this study on microplastic generation by fabric during washing, demonstrated the following conclusions that can be used to reduce the release of microplastics. First, the release of microplastics according to fabric weights and washing courses are affected by physical force. Therefore, it is necessary to reduce the amount of physical force due to water flow, increase the fabric weight, or wash the material in low temperatures. Second, in the manufacturing of washing machines, microplastic filtration can be promoted or legislatation supporting microplastic filtration can be introduced.

Preparation and Characterization of Calcium Alginate Microcapsules by Emulsification-Internal Gelation (에멀션-내부 젤화에 의한 알긴산 칼슘 마이크로캡슐의 제조 및 특성)

  • Park Soo-jin;Kang Jin-Young
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.369-374
    • /
    • 2005
  • In this work, the calcium alginate microcapsules containing lemon oil were prepared by emulsification-internal gelation and their potential use as aromatherapy was examined by the controlled release system. The lemon oil encapsulated in the alginate was successfully observed by Fourier transform (FT-IR) spectroscopy and differential scanning calorimeter (DSC) measurements. Analysis of the diameters and shapes of microcapsules was conducted by scanning electron microscopy (SEM). The mean diameters ranging from 4 to 7 um and encapsulation yield ranging from 50 to $85\%$ were obtained. The controlled release of the lemon oil at $37^{circ}$ was demonstrated by the infrared moisture determination (IMDB). It was found that the amount of released lemon oil decreased with increasing concentrations of alginate and $CaCl_2$ due to the higher the cross-linking density of the capsules prepared. The oil release from the capsule was measured as a function of physical force. We confirmed that the external factor could control the collapse of capsule wall and the release rate.

Preparation and Characterization of Biodegradable Poly($\varepsilon$-caprolactone)/ Poly(ethylene oxide) Microcapsules Containing Erythromycin (에리트로마이신을 함유한 생분해성 폴리카프로락톤/폴리(에틸렌 옥사이드) 마이크로캡슐의 제조 및 특성)

  • 박수진;김승학;이재락;이해방;홍성권
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.449-457
    • /
    • 2003
  • The purposes of this work were the producing of a biodegradable poly($\varepsilon$-caprolactone) (PCL) / poly(ethylene oxide) (PEO) microcapsule and the analyzing of form and features for the manufacturing conditions which could be observed in a prospective drug delivery systems through drug release. The effects of emulsifier, emulsifier concentration, and stirring rate for the diameter and form of the microcapsules were observed using image analyzer and scanning electron microscope. The role of interfacial adhesion between PCL/PEO and drug was determined by contact angle measurements, and the drug release test of the microcapsules was characterized by UV/vis. spectra. As a result, the microcapsules were made in spherical fonns with a mean particle size of 170 nm∼68 $\mu$m. And the work of adhesion between water and PCL/PEO increased with increasing the content of PEO, probably due to the increased the hydrophilicity. It was also found that the drug release rate from the microcapsules significantly increased with increasing the content of PEO, which could be also attributed to the increasing of the hydrophilic groups or the degree of adhesion force at interfaces.

Numerical Simulation of Failure Mechanism of Space Frame Structure by Nonlinear Dynamic Analysis (비선형 동적해석을 통한 입체라멘 교각의 파괴 메카니즘 모사)

  • 김익현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.348-355
    • /
    • 2000
  • The characteristics on non linear behavior and the failure mechanism of RC space frame structure serving railway under seismic action have been investigated by numerical analysis in time domain. The structure concerned is modeled in 3 dimensional extent and RC frame elements with fibers are employed. Fibers are characterized as RC one and PL one to distinguish different energy release after cracking. Due to deviation of mass center and stiffness center of entire structure the complex behavior under seismic action is shown. The excessive shear force is concentrated on the pier beside flexible one relatively, which leads to failure of bridge concerned.

  • PDF