• Title/Summary/Keyword: Relay settings

Search Result 21, Processing Time 0.021 seconds

A Probabilistic Approach to the Protection Capability Evaluation of Distance Relay in Transmission Systems

  • Zhang, Wen-Hao;Lee, Seung-Jae;Choi, Myeon-Song
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.407-414
    • /
    • 2010
  • This paper proposes a probability measure for the evaluation of relay performance from two aspects, namely, correct trip and no-unwanted trip. They are developed based on the relationship between relay settings and relay measurements, which follow a Gaussian probability model. The proposed method based on strict mathematical derivation is applied to protection capability evaluation of distance relays under various settings. Considering the specific attributes of each protection zone, the optimal settings are also determined accordingly. The protection capability could demonstrate clearly the relay performance under various settings and the optimal settings could provide good references for engineering applications.

Optimal Setting of Overcurrent Relay in Distribution Systems Using Adaptive Evolutionary Algorithm (적응진화연산을 이용한 배전계통의 과전류계전기 최적 정정치 결정)

  • Jeong, Hee-Myung;Lee, Hwa-Seok;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1521-1526
    • /
    • 2007
  • This paper presents the application of Adaptive Evolutionary Algorithm (AEA) to search an optimal setting of overcurrent relay coordination to protect ring distribution systems. The AEA takes the merits of both a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner to use the global search capability of GA and the local search capability of ES. The overcurrent relay settings and coordination requirements are formulated into a set of constraint equations and an objective function is developed to manage the overcurrent relay settings by the Time Coordination Method. The domain of overcurrent relays coordination for the ring-fed distribution systems is a non-linear system with a lot of local optimum points and a highly constrained optimization problem. Thus conventional methods fail in searching for the global optimum. AEA is employed to search for the optimum relay settings with maximum satisfaction of coordination constraints. The simulation results show that the proposed method can optimize the overcurrent relay settings, reduce relay mis-coordinated operations, and find better optimal overcurrent relay settings than the present available methods.

A Fast Algorithm of the Apparent Factor Calculation for Distance Relay Setting without Fault Analysis

  • Jo, Yong-Hwan;Xiang, Ling;Choi, Myeon-Song;Park, Ji-Seung;Lim, Seong-Il;Kim, Sang-Tae;Lee, Seung-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.64-69
    • /
    • 2013
  • For power system protection, the distance relay settings are important. Apparent factor is a necessary parameter in distance relay settings. Apparent factors have to be calculated when setting the distance relays and doing the resetting in case of configuration change in power system. The problem is that the current method to calculate apparent factor requires tools and plenty of time to do fault analysis and this method is complex especially in case of configuration change. Therefore this paper proposes a fast algorithm to calculate apparent factor without the fault analysis. Test results prove that this algorithm is simple and accurate by simulation.

New Method to Quantify the Operation Condition for Zone 3 Impedance Relays during Low-Frequency Power Swings

  • Li, Shenghu
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.29-35
    • /
    • 2008
  • With long time setting, zone 3 impedance relays are considered insensitive to power swings, and their operation condition during power swings is seldom analyzed. Instead of ti me-consuming simulation to the swing loci, their operation condition is directly quantified by polynominal functions in this paper to find the critical swing angle and frequency for relay operation under different relay settings and system parameters. It is found: (1) the swing loci are more densely populated inside than outside of the protection region, which corresponds to long residence time and possible relay operations; (2) the relays may be sensitive to load encroac hments and stable power swings with different relay settings and system parameters; (3) the critical swing frequency may be in the range of low-frequency power swings.

Knowledge-Based Approach Using Support Vector Machine for Transmission Line Distance Relay Co-ordination

  • Ravikumar, B.;Thukaram, D.;Khincha, H.P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.363-372
    • /
    • 2008
  • In this paper, knowledge-based approach using Support Vector Machines (SVMs) are used for estimating the coordinated zonal settings of a distance relay. The approach depends on the detailed simulation studies of apparent impedance loci as seen by distance relay during disturbance, considering various operating conditions including fault resistance. In a distance relay, the impedance loci given at the relay location is obtained from extensive transient stability studies. SVMs are used as a pattern classifier for obtaining distance relay co-ordination. The scheme utilizes the apparent impedance values observed during a fault as inputs. An improved performance with the use of SVMs, keeping the reach when faced with different fault conditions as well as system power flow changes, are illustrated with an equivalent 265 bus system of a practical Indian Western Grid.

Optimum Setting of Overcurrent Relay in Distribution Systems Using Adaptive Evolutionary Algorithm (적응진화 알고리즘을 이용한 배전계통의 과전류보호계전기 최적 정정치 결정)

  • Jeong, Hee-Myung;Park, June-Ho;Lee, Hwa-Seok;Mun, Kyeong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.252-253
    • /
    • 2006
  • This paper presents OC relay coordination to protect distribution system by Adaptive Evolutionary Algorithm(AEA). AEA is a optimization method to overcome the problems of classical optimization. The results show that the proposed method can improve more optimum relay settings than present available methods.

  • PDF

An Innovative Fast Relay Coordination Method to Bypass the Time Consumption of Optimization Algorithms in Relay Protection Coordination

  • Kheshti, Mostafa;Kang, Xiaoning;Jiao, Zaibin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.612-620
    • /
    • 2017
  • Relay coordination in power system is a complex problem and so far, meta-heuristic algorithms and other methods as an alternative approach may not properly deal with large scale relay coordination due to their huge time consuming computation. In some cases the relay coordination could be unachievable. As the urgency for a proper approach is essential, in this paper an innovative and simple relay coordination method is introduced that is able to be applied on optimization algorithms for relay protection coordination. The objective function equation of operating time of relays are divided into two separate functions with less constraints. As the analytical results show here, this equivalent method has a remarkable speed with high accuracy to coordinate directional relays. Two distribution systems including directional overcurrent relays are studied in DigSILENT software and the collected data are examined in MATLAB. The relay settings of this method are compared with particle swarm optimization and genetic algorithm. The analytical results show the correctness of this mathematical and practical approach. This fast coordination method has a proper velocity of convergence with low iteration that can be used in large scale systems in practice and also to provide a feasible solution for protection coordination in smart grids as online or offline protection coordination.

A Development of Diagnosis Expert System for Power System Protective Relay Settings (보호계전기 정정값 진단 전문가 시스템 개발)

  • Kim, K.J.;Lee, S.J.;Choi, M.S.;Kang, S.H.;Kim, H.P.;Lee, W.H.;Choi, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1394-1396
    • /
    • 1999
  • It is important the protective relay should have high selectivity and sensitivity performance and it is achieved by correct setting of the relay parametes. The verification of accurate setting for the protective relay is very difficult before a actual fault occurs. This paper reports a diagnosis expert system to verify the correctness of the relay setting by using the operation results in the power system fault simulation.

  • PDF

A Study on the Protective Relay Setting Rules for 765kV Power System by Analysis of Errors (765kV 송전계통 보호계전기의 오차분석을 통한 정정지침에 관한 연구)

  • 최면송;이승재;강상희;조성진;배영준;조범섭;유영식
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.1
    • /
    • pp.50-57
    • /
    • 2003
  • In this paper, the protective relay setting rules of Korean electric power system are studied by analysis of errors to be considered. An accurate operation of protective relays with accurate settings are important in power system reliability. The setting rules are used from the first establishment in 1982 and revision in 1990 Therefore, it needs revise and analysis of the setting rules because of environmental changes such as voltage raise or applied new technology of power system. Two major setting rules are studied. One is the rule for Zones of distance relay for transmission lines. The other is the one of differential current in a differential relay for power transformers. The range of errors in the setting rules accepted in the field experience is studied in simulation of case study. Also some guide lines for the range of errors in the setting rules are presented from the case study using Matlab simulation.

Zero-one Integer Programming Approach to Determine the Minimum Break Point Set in Multi-loop and Parallel Networks

  • Moirangthem, Joymala;Dash, Subhransu Sekhar;Ramaswami, Ramas
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.151-156
    • /
    • 2012
  • The current study presents a zero-one integer programming approach to determine the minimum break point set for the coordination of directional relays. First, the network is reduced if there are any parallel lines or three-end nodes. Second, all the directed loops are enumerated to reduce the iteration. Finally, the problem is formulated as a set-covering problem, and the break point set is determined using the zero-one integer programming technique. Arbitrary starting relay locations and the arbitrary consideration of relay sequence to set and coordinate relays result in navigating the loops many times and futile attempts to achieve system-wide relay coordination. These algorithms are compared with the existing methods, and the results are presented. The problem is formulated as a setcovering problem solved by the zero-one integer programming approach using LINGO 12, an optimization modeling software.