• Title/Summary/Keyword: Relay network

Search Result 702, Processing Time 0.023 seconds

Using Mobile Data Collectors to Enhance Energy Efficiency a nd Reliability in Delay Tolerant Wireless Sensor Networks

  • Yasmine-Derdour, Yasmine-Derdour;Bouabdellah-Kechar, Bouabdellah-Kechar;Faycal-Khelfi, Mohammed
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.275-294
    • /
    • 2016
  • A primary task in wireless sensor networks (WSNs) is data collection. The main objective of this task is to collect sensor readings from sensor fields at predetermined sinks using routing protocols without conducting network processing at intermediate nodes, which have been proved as being inefficient in many research studies using a static sink. The major drawback is that sensor nodes near a data sink are prone to dissipate more energy power than those far away due to their role as relay nodes. Recently, novel WSN architectures based on mobile sinks and mobile relay nodes, which are able to move inside the region of a deployed WSN, which has been developed in most research works related to mobile WSN mainly exploit mobility to reduce and balance energy consumption to enhance communication reliability among sensor nodes. Our main purpose in this paper is to propose a solution to the problem of deploying mobile data collectors for alleviating the high traffic load and resulting bottleneck in a sink's vicinity, which are caused by static approaches. For this reason, several WSNs based on mobile elements have been proposed. We studied two key issues in WSN mobility: the impact of the mobile element (sink or relay nodes) and the impact of the mobility model on WSN based on its performance expressed in terms of energy efficiency and reliability. We conducted an extensive set of simulation experiments. The results obtained reveal that the collection approach based on relay nodes and the mobility model based on stochastic perform better.

Power Allocation and Performance Analysis for the Secondary User under Primary Outage Constraint in Cognitive Relay Network (Cognitive Relay 네트워크에서 일차 사용자의 Outage 제약 조건 하에서의 이차 사용자의 파워 할당 기법 및 성능 분석)

  • Kim, Hyung-Jong;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.46-51
    • /
    • 2012
  • In this paper, we investigate the power allocation for cognitive relay networks. Cognitive relay networks offer not only increasing spectral efficiency by spectrum sharing but also extending the coverage through the use of relays. For spectrum sharing, conventional works have assumed that secondary users know perfect channel information between the secondary and primary users. However, this channel information may be outdated at the secondary user because of the time-varying properties or feedback latency from the primary user. This causes the violation for interference constraint, and the secondary user cannot share the spectrum of the primary after all. To overcome this problem, we propose the power allocation scheme for the secondary user under the allowable primary user's outage probability constraint. Since the proposed power allocation scheme does not use the instantaneous channel information, the secondary users have lower feedback burden. In addition, the proposed scheme is also robust to the outdated channel environment.

Performance Analysis of Cooperative Diversity on the Usage of Opportunistic Relay (기회주의적인 중계기 사용에 대한 협력 다이버시티의 성능 분석)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.7-12
    • /
    • 2014
  • The data forwarding transmission is an important function of the relay in cooperative communication in wireless communication systems. However, additional relay cause the waste of power consumption and cost. Therefore, in this paper, we consider how to use the user mobile devices in stead of relays to deal with this problem. In this paper, we proposed the protocol that divide each relay into two states of idle and non-idle. The receiver has two functions of base station and user mobile device. In this case, it is possible that no additional cost, and improve the spectral efficiency and network capacity. We verified BER performance for the proposed protocol over Rayleigh fading through Monte-Carlo simulation.

Performance Analysis of Relay applied to Energy Harvesting (에너지 하베스팅을 적용한 중계기의 성능 분석)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.67-72
    • /
    • 2014
  • In this paper, an energy harvesting scheme is applied in the cooperative communication. The proposed scheme uses an energy harvesting relay in which the relay harvests the energy from the source node and transfers to the power form in forwarding the received data to the destination node. The well-known maximal ratio combining (MRC) technique is applied to increase the diversity gain at the destination. Therefore, with applying the proposed energy harvesting scheme, the limited power at the relay is solved, and the operation efficiency of the network and the mobile devices is improved. Finally, performance of the proposed protocol is analyzed in terms of bit error rate, outage probability, power collection efficiency.

Interference Aware Cost Effective Coverage Extension in Multihop Relay Networks (다중홉 릴레이 시스템에서 간섭의 영향과 비용의 효과를 고려한 셀 커버리지 확장 방법에 관한 연구)

  • Kim, Yongchul;Lim, Won-Taek;Cho, Sung-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.12
    • /
    • pp.1138-1147
    • /
    • 2012
  • IEEE standard 802.16, often referred to as WiMAX, is considered a "last mile" broadband wireless access alternative to conventional DSL and Cable Internet. One extension that is recently receiving great attention is the IEEE 802.16j Mobile Multihop Relay (MMR) amendment. The focus of this amendment is the development of simple and lower cost relay stations (RSs) that can enhance network coverage and capacity. We use our proposed simple scheduling scheme for serving the SSs in a fair manner and evaluate the performance of WiMAX networks with relays, especially we analyze the impact of interference between RSs on cell throughput Through simulations and numerical analysis, we make several fundamental observations about interference aware cost effective coverage extension in such networks.

Performance Analysis of Mobile WiMAX MMR System with Vertical Handover (수직 핸드오버를 통한 Mobile WiMAX MMR system의 성능분석)

  • Bae, Mun-Han;Kim, Young-Il;Kim, Suk-Chan;Lee, Dong-Heon;Otgonbayar, B.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11A
    • /
    • pp.844-851
    • /
    • 2009
  • Handover is needed in multi-hop relay systems to support mobility. The main purpose of handover is to provide the continuous connection when a MS migrates from the air-interface of one BS to another air-interface provided by another BS. Especially the handover between different systems is essential to next generation network. Vertical Handover technology in Mobile WiMAX MMR system is very useful for operators to introduce to Mobile WiMAX system in an overlaid cell environment. This technology will be applied to technology which hands MRS(Mobile Relay Station) over to different systems for system performance enhancement in Ubiquitous environment overlaid between Micro ce11(Frequency 1,FA1) and Macro cell(Frequency 2,FA2). In this paper, FA1 and FA2 are used in order to perform Vertical Handover of MRS(Mobile Relay Station) according to suggested conditions. interferences from neighboring BS or other sectors of 6 macro cells surrounding center Macro cell are analyzed and throughputs are measured according to suggested conditions.

A Minimum Energy Consuming Mobile Device Relay Scheme for Reliable QoS Support

  • Chung, Jong-Moon;Kim, Chang Hyun;Lee, Daeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.618-633
    • /
    • 2014
  • Relay technology is becoming more important for mobile communications and wireless internet of things (IoT) networking because of the extended access network coverage range and reliable quality of service (QoS) it can provide at low power consumption levels. Existing mobile multihop relay (MMR) technology uses fixed-point stationary relay stations (RSs) and a divided time-frame (or frequency-band) to support the relay operation. This approach has limitations when a local fixed-point stationary RS does not exist. In addition, since the time-frame (or frequency-band) channel resources are pre-divided for the relay operation, there is no way to achieve high channel utilization using intelligent opportunistic techniques. In this paper, a different approach is considered, where the use of mobile/IoT devices as RSs is considered. In applications that use mobile/IoT devices as relay systems, due to the very limited battery energy of a mobile/IoT device and unequal channel conditions to and from the RS, both minimum energy consumption and QoS support must be considered simultaneously in the selection and configuration of RSs. Therefore, in this paper, a mobile RS is selected and configured with the objective of minimizing power consumption while satisfying end-to-end data rate and bit error rate (BER) requirements. For the RS, both downlink (DL) to the destination system (DS) (i.e., IoT device or user equipment (UE)) and uplink (UL) to the base station (BS) need to be adaptively configured (using adaptive modulation and power control) to minimize power consumption while satisfying the end-to-end QoS constraints. This paper proposes a minimum transmission power consuming RS selection and configuration (MPRSC) scheme, where the RS uses cognitive radio (CR) sub-channels when communicating with the DS, and therefore the scheme is named MPRSC-CR. The proposed MPRSC-CR scheme is activated when a DS moves out of the BS's QoS supportive coverage range. In this case, data transmissions between the RS and BS use the assigned primary channel that the DS had been using, and data transmissions between the RS and DS use CR sub-channels. The simulation results demonstrate that the proposed MPRSC-CR scheme extends the coverage range of the BS and minimizes the power consumption of the RS through optimal selection and configuration of a RS.

System Architecture for Performance Management in ATM Network (ATM 통신망의 성능관리를 위한 시스템구조)

  • Hyeog In Kwon
    • The Journal of Society for e-Business Studies
    • /
    • v.6 no.2
    • /
    • pp.25-38
    • /
    • 2001
  • ATM is the transport method for the broadband integrated services digital networks(B-ISDN). It may replace existing LAN, MAN and WAN technologies such as CSMA/CD, FDDI, Frame relay, X.25, etc. But it is more complicate than existing network technologies. One of the main difficulties in ATM network is performance management. Specifically, the problems are evaluating the performance and tuning the values of the performance parameters, The goal of this paper is to introduce a system architecture designed for ATM network performance management, The major ingredients of the system are generic performance parameters In be measured from ATM network, performance evaluation models and decision criteria concerning the network performance. In this paper, general requirements for performance management application in ATM network are discussed.

  • PDF

DEVELOPMENT OF SIMULATION PLATFORM USED FOR PERFORMANCE EVALUATION OF INFORMATION NETWORK AND ITS APPLICATION

  • Rieko, Aizawa;Yojiro, Ohta;Eiji, Miyagaki;Nakano, Kazuo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.110-115
    • /
    • 2001
  • Today, effective utilization of sophisticated networks greatly influences the activities of a business, making performance evaluations of computer network systems a necessity, We have developed a special computer network simulator capable of automatically generating a model based on data accumulated by a network analyzer to guide the user in selecting ideal parameters. The simulator was developed to provide user-friendly analysis for engineers involved in the actual network design. This paper gives an overview of the simulator and describes an example application of evaluating a network design that anticipates the future increase in traffic for a company introducing voice over frame relay (VoFR) into a wide area network (WAW).

  • PDF

Performance Analysis on Delay- and Disruption-Tolerant Network in Interplanetary Network (행성 간 통신에서의 지연/분열 허용 네트워크 성능 분석)

  • Baek, Jaeuk;Han, Sang Ik;Kim, In-kyu
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.42-49
    • /
    • 2017
  • Delay- and Disruption-Tolerant Network (DTN) has been considered as a key technology to overcome main challenges in interplanetary communications such as an intermittent connectivity and high bit error rates. The lack of end-to-end connectivity between source and destination results in long and variable delays and data loss, hence the Internet Protocols cannot operate properly in such environments because it requires an end-to-end connectivity. The DTN, which utilizes 'store-and-forward' message passing scheme between nodes, can overcome the lack of end-to-end connectivity in Interplanetary Network (IPN). In this paper, DTN is applied to 3-hop relay IPN, where messages are transmitted from Earth ground station to Lunar lander through Earth satellite and Lunar orbiter. ONE simulator is used to reflect the real environment of IPN and an efficient resource management method are analyzed to guarantee the message delivery by optimizing a message TTL (Time to Live), buffer size and message fragmentation.