• Title/Summary/Keyword: Relay Channel

Search Result 398, Processing Time 0.028 seconds

A Study on the Channel Modeling of Slope Equalizer and Its Digital Implementation for Digital Radio Relay System (디지털 무선 전송장치를 위한 기울기 등화기의 채널 모델링 및 디지털 구현에 관한 연구)

  • 서경환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.777-786
    • /
    • 2001
  • In this paper, as one of countermeasure techniques for a frequency selective fading, a digital slope equalizer(DSE) for 64-QAM digital radio relay system is analyzed in terms of principle, channel modeling, and digital implementation. Also computer simulations have been performed for DSE with a complex 13-tap adaptive time domain equalizer chip. It is shown that about 4.5 dB improvement in system signature can be obtained at the channel edge, and a variety of simulated results are reviewed in view of DSE modeling limit, operating frequency, control coefficient, signal constellation, and system signature. Finally, the functions of DSE chip confirmed up to 61 MHz clock operation are illustrated.

  • PDF

Random Access Channel Allocation Scheme in Multihop Cellular Networks (멀티 홉 셀룰라 망에서의 랜덤 액세스 채널 할당 방안)

  • Cho, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4A
    • /
    • pp.330-335
    • /
    • 2007
  • This paper proposes a multichannel random access channel allocation scheme for multihop cellular networks to guarantee the stable throughput of a random access. The fundamental contribution is a mathematical formula for an optimal partition ratio of shared random access channels between a base station and a relay station. In addition, the proposed scheme controls the retransmission probability of random access packets under heavy load condition. Simulation results show that the proposed scheme can guarantee the required random access channel utilization and packet transmission delay even if the a random access packet arrival rate is higher than 0.1.

A Network Coding Mechanism Minimizing Congestion of Lossy Wireless Links (손실이 있는 무선 링크에서 혼잡을 최소화하는 네트워크 코딩 기법)

  • Oh, Hayoung;Lim, Sangsoon
    • Journal of KIISE:Information Networking
    • /
    • v.41 no.4
    • /
    • pp.186-191
    • /
    • 2014
  • Previous work only focuses on a maximization of network coding opportunity since it can reduce the number of packets in network system. However, it can make congestion in a relay node as each source node may transmit each packet with the maximum transmission rate based on the channel qualities. Therefore, in this paper, we propose CmNC (Congestion minimized Network Coding over unreliable wireless links) performing opportunistic network coding to guarantee the network coding gain with the consideration of the congestion and channel qualities. The relay node selects the best network code set based on the objective function for reducing the packet loss and congestion via a dynamic programming. With Qualnet simulations, we show CmNC is better up to 20% than the previous work.

Layer based Cooperative Relaying Algorithm for Scalable Video Transmission over Wireless Video Sensor Networks (무선 비디오 센서 네트워크에서 스케일러블 비디오 전송을 위한 계층 기반 협업 중계 알고리즘*)

  • Ha, Hojin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.13-21
    • /
    • 2022
  • Recently, in wireless video sensor networks(WVSN), various schemes for efficient video data transmission have been studied. In this paper, a layer based cooperative relaying(LCR) algorithm is proposed for minimizing scalable video transmission distortion from packet loss in WVSN. The proposed LCR algorithm consists of two modules. In the first step, a parameter based error propagation metric is proposed to predict the effect of each scalable layer on video quality degradation at low complexity. In the second step, a layer-based cooperative relay algorithm is proposed to minimize distortion due to packet loss using the proposed error propagation metric and channel information of the video sensor node and relay node. In the experiment, the proposed algorithm showed that the improvement of peak signal-to-noise ratio (PSNR) in various channel environments, compared to the previous algorithm(Energy based Cooperative Relaying, ECR) without considering the metric of error propagation.The proposed LCR algorithm minimizes video quality degradation from packet loss using both the channel information of relaying node and the amount of layer based error propagation in scalable video.

A Study on the performance improvement by loop interference cancellation and adaptive equalizer in OFDMA based Wibro relay station (OFDMA 기반 Wibro 중계국에서 루프 간섭 제거 및 적응 등화기를 이용한 성능 개선에 관한 연구)

  • Lee, Chong-Hyun;Lim, Seung-Gag
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.141-148
    • /
    • 2006
  • This paper deals with the performance improvement by eliminating loop interference signal and inserting adaptive equalizer for phase compensation in OFDMA based Wibro relay station. The Wibro relay station is used for the extension of communication service area and for throughput improvement of base station. The loop interference is important factor of performance determination of relay station when transmitter and receiver is very closely located. In order to design interference canceller, we generated base-band OFDMA signal and then transmitted the signal along with pilot tones alined with two different combinations for training mode. And then, we generated received fading signal due to the loop interference added noise to the received signal. In the receiver, the transmitted signal is recovered by elimination of the interference signal with channel estimate and compensating phase by adaptive equalizer. The performance improvement was verified by computer simulation which show channel estimation, constellation of signal and BER characteristics according to the variation of SNR ratio.

On the Practical Physical-Layer Network Coding with Partially Overlapped Packets (부분 패킷 중첩 환경에서 물리계층 네트워크 코딩에 관한 연구)

  • Lim, Hyeonwoo;Jung, Bang Chul;Ban, Tae-Won;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2813-2819
    • /
    • 2015
  • In this paper, we investigate the physical layer network coding (PNC) technique in a two-way relay channel (TWRC) where two source nodes send and receive data with each other via a relay node. In particular, we consider the communication scenario where packet length from the two sources is different from each other. We analyze the bit error rate (BER) of the received packet at the relay node according to degree of overlapping between two packets. The BER of the short packet remains unchanged regardless of the degree of overlapping since the entire packet is overlapped with the longer packet, while the BER of the longer packet becomes improved as the degree of overlapping decreases. Thus, we need a novel transmission scheme to enhance BER performance of the PNC technique in TWRC environments since the overall BER performance of the PNC technique at the relay node depends on the worse BER between two ovelapping packets' BERs.

Multi-hop Packet Relay MAC Protocol Considering Channel Conditions in UWB-based WPANs (UWB 기반의 WPAN에서 채널 상태를 고려한 다중 홉 중계 방식의 MAC 프로토콜)

  • Wang Weidong;Seo Chang-Keun;Jeong Soon-Gyu;Yoo Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11B
    • /
    • pp.792-803
    • /
    • 2005
  • Ultra wide band (UWB) technology will be applied in the high rare wireless personal area networks (WPANs) for its high rate, low power, and innate immunity to multipath fading. In this paper, a power aware multi-hop packet relay MAC protocol in UWB based WPANs is proposed and a power aware path status factor (PAPSF), which is derived from SINR and power resource condition of each device, is used to select a suitable relay node. Compared with relaying by piconet coordinator (PNC), which is easily chosen by other ad hoc routing protocol, the new scheme can achieve hi임or throughput, decrease the time required for transmitting high power signal and we can easily distribute the battery power consumption from PNC to other devices in the piconet to prevent the PNC device using up its battery too fast and finally avoid PNC handover too frequently.

Portable 4K UHD Broadcasting Device using 5G Mobile Network as a Transmission Channel (5G 이동통신망을 전송채널로 활용하는 휴대형 4K UHD 방송중계 장치)

  • Paik, Junghoon;Kim, Yongsuk
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.789-797
    • /
    • 2020
  • In this paper, we propose a protocol structure of a portable 4K Ultra High Definition (UHD) broadcast relay device that utilizes a 5G mobile communication network as a transport channel, and construct a prototype to conduct a broadcast relay performance test through a 5G mobile communication network. The test shows that the encoding time of the 4K UHD encoder is from a minimum of 86.28ms to a maximum of 88.41ms, the relay delay time in the 5G mobile communication network is 13.645ms on average, the delay variation is 17.49ms, and the glass-to-glass delay time is 289.90 on average, the delay variation is 27.63ms. Using the developed prototype, a relay test between Seoul and Anseong is conducted, and the possibility of 4K UHD broadcasting through a 5G mobile communication network is confirmed.

Enhanced Throughput and QoS Fairness for Two-Hop IEEE 802.16j Relay Networks

  • Kim, Sang-Won;Sung, Won-Jin;Jang, Ju-Wook
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.32-42
    • /
    • 2011
  • Frequency reuse among relay stations (RSs) in a down-link access zone is widely adopted for throughput enhancement in IEEE 802.16j relay networks. Since the areas covered by the RSs or the base station (BS) may overlap, some mobile stations (MSs) at the border between two neighboring transmitting stations (RS or BS) using an identical frequency band may suffer severe interference or outage. This co-channel interference within the cell degrades the quality of service (QoS) fairness among the MSs as well as the system throughput. Exclusive use of a frequency band division (orthogonal resource allocation) among RSs can solve this problem but would cause degradation of the system throughput. We observe a trade-off between system throughput and QoS fairness in the previously reported schemes based on frequency reuse. In this paper, we propose a new frequency reuse scheme that achieves high system throughput with a high fairness level in QoS, positioning our scheme far above the trade-off curve formed by previous schemes. We claim that our scheme is beneficial for applications in which a high QoS level is required even for the MSs at the border. Exploiting the features of a directional antenna in the BS, we create a new zone in the frame structure. In the new zone, the RSs can serve the subordinate MSs at the border and prone to interference. In a 3-RS topology, where the RSs are located at points $120^{\circ}$ apart from one another, the throughput and Jain fairness index are 10.64 Mbps and 0.62, respectively. On the other hand, the throughput for the previously reported overlapped and orthogonal allocation schemes is 8.22 Mbps (fairness: 0.48) and 3.99 Mbps (fairness: 0.80), respectively. For a 6-RS topology, our scheme achieves a throughput of 18.38 Mbps with a fairness of 0.68; however, previous schemes with frequency reuse factors of 1, 2, 3, and 6 achieve a throughput of 15.24 Mbps (fairness: 0.53), 12.42 Mbps (fairness: 0.71),8.84 Mbps (fairness: 0.88), and 4.57 Mbps (fairness: 0.88), respectively.

Performance Comparisons of Cooperative Multi-relay System with/without Opportunistic Transmission in Rayleigh Fading Channel (Rayleigh 페이딩 채널에서 기회전송 유무에 따른 협동 다중 릴레이 시스템의 성능비교)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.25-33
    • /
    • 2008
  • The performance of power constrained cooperative multi-relay system with/without opportunistic transmission is considered in Rayleigh fading. The three power allocation methods are considered to maximize the system performance when the total network power is limited. It is analyzed that the opportunistic power allocation strategy has the best performance enhancement compared to the other power allocation strategies. The opportunistic relays increases with the total network power, which induce the higher diversity order of the opportunistic cooperative diversity, consequently improves the end-to-end outage probability.

  • PDF