• Title/Summary/Keyword: Relaxation time constant

Search Result 116, Processing Time 0.028 seconds

A Study on the Dielectric Properties of Phospholipid Organic Thin Films (인지질 유기박막의 유전특성에 관한 연구)

  • Song, Jin-Won;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1983-1985
    • /
    • 1999
  • The dielectric constant of a monolayer on a material surface was calculated with consideration of the local field acting on polar molecules with a permanent dipole moment, and the interaction working between the molecules and a material. It is revealed that the dielectric relaxation time r of monolayers in the isotropic polar orientational phase is determined using a linear relationship between the monolayers compression speed a and the molecular area. The dielectric relaxation time of phospholipid monolayers was examined on the basis of analysis developed here.

  • PDF

Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories

  • Ezzat, M.A.;El-Bary, A.A.
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • A unified mathematical model of phase-lag Green-Naghdi magneto-thermoelasticty theories based on fractional derivative heat transfer for perfectly conducting media in the presence of a constant magnetic field is given. The GN theories as well as the theories of coupled and of generalized magneto-thermoelasticity with thermal relaxation follow as limit cases. The resulting nondimensional coupled equations together with the Laplace transforms techniques are applied to a half space, which is assumed to be traction free and subjected to a thermal shock that is a function of time. The inverse transforms are obtained by using a numerical method based on Fourier expansion techniques. The predictions of the theory are discussed and compared with those for the generalized theory of magneto-thermoelasticity with one relaxation time. The effects of Alfven velocity and the fractional order parameter on copper-like material are discussed in different types of GN theories.

Structural Characteristics of 3- and 4-Coordinate Borons from 11B MAS NMR and Single-Crystal NMR in the Nonlinear Optical Material BiB3O6

  • Kim, Woo Young;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.1
    • /
    • pp.24-29
    • /
    • 2013
  • The structural characteristics of 4-coordinate $BO_4$ [B(1)] and 3-coordinate $BO_3$ [B(2)] groups in $BiB_3O_6$ were studied by $^{11}B$ magic angle spinning (MAS) and single-crystal nuclear magnetic resonance (NMR) spectroscopy. The spin-lattice relaxation time in the laboratory frame, $T_1$, for $^{11}B$ decreased slowly with increasing temperature, whereas the spin-lattice relaxation times in the rotating frame, $T_{1{\rho}}$, for B(1) and B(2), which differed from $T_1$, were nearly constant. Further, $T_{1{\rho}}$ for B(1) and B(2) showed very similar trends, although the $T_{1{\rho}}$ value of B(2) was shorter than that of B(1). The 3-coordinate $BO_3$ and 4-coordinate $BO_4$ were distinguished by $^{11}B$ MAS NMR spectrum and $T_{1{\rho}}$.

A Study on Shrinkage the Weft Knitted Fabrics (위편포의 수축에 관한 연구)

  • Sung Baek Joo;Choi Suk Chul;Chung Soon Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.4 no.1_2
    • /
    • pp.25-33
    • /
    • 1980
  • The studies on shrinkage and characteristics of the weft knitted fabrics were investigated under the various dry and wet treating conditions. Various relaxation values were found out according to treating conditions. The characteristics of knitted fabrics such as shrinkage rate, thickness, spirality, elongation and recovery were also measured. The used knitting yams were OE (open-end) cotton and POY (pre-oriented yarn)-DTY (draw textured yam) polyester. The conclusions obtained in this study are as follows. 1. In case of dry relaxation little change of Ks values was seen with increasing time after 48 hours. So it was found that relaxation shrinkage of dry relaxation reached its maximal state in about 48 hours. 2. In case of wet relaxation, higher Ks values were observed, in comparision with those of dry one and higher shrinkage rates were also observed. But when experimental temperature was constant, sudden marked increases in Ks values and shrinkage rates appeared through the initial 4 hours, and after that time little change was seen in them. 3. As Ks value increases, thickness also increased. But thickness showed to some degree stability around Ks value 23. 4. As Ks value increases, spirality values also increased gradually. But little change of spirality values was observed above a certain Ks values (cotton 22.5, polyester 21.5). 5. As Ks value increases, the elongation decreased under a certain load, and the recovery was random.

  • PDF

The Comparison of Activation Protocols for PEMFC MEA with PtCo/C Catalyst (PtCo/C 촉매를 사용한 PEMFC MEA의 활성화 프로토콜 비교)

  • GISEONG LEE;HYEON SEUNG JUNG;JINHO HYUN;CHANHO PAK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.178-186
    • /
    • 2023
  • Three activation methods (constant voltage, current cycling, and hydrogen pumping) were applied to investigate the effects on the performance of the membrane electrode assembly (MEA) loaded with PtCo/C catalyst. The current cycling protocol took the shortest time to activate the MEA, while the performance after activation was the worst among the all activation methods. The constant voltage method took a moderate activation time and exhibited the best performance after activation. The hydrogen pumping protocol took the longest time to activate the MEA with moderate performance after activation. According to the distribution of relaxation time analysis, the improved performance after the activation mainly comes from the decrease of charge transfer resistance rather than the ionic resistance in the cathode catalyst layer, which suggests that the existence of water on the electrode is the key factor for activation.

The Effect of Ion Contribution to the Dielectric Properties of $\beta$-PVDF Thin Film Fabricated by Vapor Deposition Method (진공증착법으로 제조된 $\beta$-PVDF 박막의 유전 특성에 미치는 이온의 영향)

  • 박수홍;김종택;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1007-1013
    • /
    • 1998
  • In this paper, the dielectric properties of fabricated Polyvinylidene fluoride(PVDF, $PVF_2$) thin film with substrate temperature from 30 to at vapor deposition. The dielectric properties of PVDF thin film had been studied in the frequency range from 10Hz to 4MHz at measuring temperature between 20 and $100^{/circ}C$. The anomalous increasing in dielectric constant and dielectric loss at low frequencies and high temperature was described for PVDF thin film containing ion impurities. In particularly, ion mobility of fabricated PVDF thin film at substrate temperature at $30^{/circ}C$ decrease from $2\times10^{-5}\;to\;3.07$\times10^{-7}cm^2/V.s$ On the other hand, ion density increase abruptly from 1.49\times$$10^{13}$ to $1.5\times$10^{16}$cm^{-3}$ In spite of decreasing of ion mobility, dielectric constants and dielectric loss for PVDF thin film increase rapidly with decreasing frequency and high temperature. It was concluded that the dielectric constants and dielectric loss was related to ion density than to ion mobility at low frequency and high temperatures.

  • PDF

Time-Resolved Photoexcitation Dynamics of Electrical Conductivity of Magnetic Organic Superconductor λ-(BETS)2Fe0.45Ga0.55Cl4

  • Sabeth, Farzana;Islam, Md. Serajul;Endo, Tadashi;Ohta, Nobuhiro
    • Rapid Communication in Photoscience
    • /
    • v.4 no.1
    • /
    • pp.25-28
    • /
    • 2015
  • The time-resolved photoexcitation dynamics of electrical conductivity of the magnetic organic superconductor ${\lambda}-(BETS)_2Fe_{0.45}Ga_{0.55}Cl_4$ has been studied with a nanosecond visible laser pulse at its three different phases, i. e., metallic phase, superconducting phase and insulating phase. A transient increase of the resistance is induced by photoirradiation at all the temperatures measured for all three phases, but the decay profile shows a significant temperature dependence. The relaxation rate in the metallic and insulating phase are different from each other, and the decay time is relatively faster and almost constant in the metallic phase. However, a prolongation of the relaxation time is observed at temperature just around the narrow superconducting phase. Nonbolometric (nonthermal) origin of the observed photoresponse of the electrical conductivity is confirmed in the superconducting phase.

Effects of prestretch on stress relaxation and permanent deformation of orthodontic synthetic elastomeric chains

  • Chang, Jee Hae;Hwang, Chung-Ju;Kim, Kyung-Ho;Cha, Jung-Yul;Kim, Kwang-Mahn;Yu, Hyung Seog
    • The korean journal of orthodontics
    • /
    • v.48 no.6
    • /
    • pp.384-394
    • /
    • 2018
  • Objective: This study was performed to investigate an appropriate degree of prestretch for orthodontic synthetic elastomeric chains focusing on time-dependent viscoelastic properties. Methods: Orthodontic synthetic elastomeric chains of two brands were prestretched to 50, 100, 150, and 200% of the original length in one and three cycles, and the hysteresis areas of the obtained stress-strain curves were determined. Acrylic plates were employed to maintain constant strain during the experiment. A total of 180 samples were classified into nine groups according to brand, and their stresses and permanent deformations were measured immediately after prestretch (0 hour), after 1 hour and 24 hours, and after 1, 2, 3, 4, 5, 6, 7, and 8 weeks. The relationship between stress relaxation and permanent deformation was investigated for various degrees of prestretch, and the estimated stress resulting from tooth movement was calculated. Results: The degree of prestretch and the stress relaxation ratio exhibited a strong negative correlation, whereas no correlation was found between the degree of prestretch and the average normalized permanent strain. The maximal estimated stress was observed when prestretch was performed in three cycles to 200% of the original length. Conclusions: Although prestretch benefited residual stress, it did not exhibit negative effects such as permanent deformation. The maximal estimated stress was observed at the maximal prestretch, but the difference between prestretch and control groups decreased with time. In general, higher residual stresses were observed for product B than for product A, but this difference was not clinically significant.

A novel approach to the form-finding of membrane structures using dynamic relaxation method

  • Labbafi, S. Fatemeh;Sarafrazi, S. Reza;Gholami, Hossein;Kang, Thomas H.K.
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.123-141
    • /
    • 2017
  • Solving a system of linear or non-linear equations is required to analyze any kind of structures. There are many ways to solve a system of equations, and they can be classified as implicit and explicit techniques. The explicit methods eliminate round-off errors and use less memory. The dynamic relaxation method (DR) is one of the powerful and simple explicit processes. The important point is that the DR does not require to store the global stiffness matrix, for which it just uses the residual loads vector. In this paper, a new approach to the DR method is expressed. In this approach, the damping, mass and time steps are similar to those of the traditional method of dynamic relaxation. The difference of this proposed method is focused on the method of calculating the damping. The proposed method is expressed such that the time step is constant, damping is equal to zero except in steps with maximum energy and the concentrated damping can be applied to minimize the energy of system in this step. In this condition, the calculation of damping in all steps is not required. Then the volume of computation is reduced. The DR method for form-finding of membrane structures is employed in this paper. The form-finding of the three plans related to the membrane structures with different loading is considered to investigate the efficiency of the proposed method. The numerical results show that the convergence rate based on the proposed method increases in all cases than other methods.

Prediction of Long-term Viscoelastic Performance of PET Film Using RH-DMA (RH-DMA를 적용한 PET 필름의 장기 점탄성 성능 예측)

  • Choi, Sun Ho;Yoon, Sung Ho
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.382-387
    • /
    • 2019
  • A single frequency strain mode test, a stress relaxation mode test, and a creep test using RH-DMA were performed to investigate the effects of relative humidity and temperature on the viscous properties of PET film. The relative humidity was 10%, 30%, 50%, 70%, and 90%. The temperature was considered to be 30~95℃ for single frequency strain mode tests, 30℃ and 70℃ for stress relaxation mode test, and 5~95℃ for creep test. According to the results, higher relative humidity results in lower storage modulus and loss modulus, but the maximum value of the loss modulus is not significantly affected by changes in relative humidity and is almost constant. Relaxation modulus decreases rapidly at the beginning and becomes constant, and as the temperature increases, it is susceptible to changes in relative humidity. Strain recovery also increases rapidly at the beginning and is susceptible to changes in relative humidity as the temperature increases. In addition, as the temperature increases, the degree of increase in creep compliance increases, and as the temperature rises above the glass transfer temperature, the degree of increase becomes very large. The master curve determined by the time-temperature superposition provides the information to predict the long-term performance under operating conditions such as relative humidity and temperature.