DOI QR코드

DOI QR Code

Time-Resolved Photoexcitation Dynamics of Electrical Conductivity of Magnetic Organic Superconductor λ-(BETS)2Fe0.45Ga0.55Cl4

  • Sabeth, Farzana (Research Institute for Electronic Science (RIES), Hokkaido University) ;
  • Islam, Md. Serajul (Research Institute for Electronic Science (RIES), Hokkaido University) ;
  • Endo, Tadashi (Research Institute for Electronic Science (RIES), Hokkaido University) ;
  • Ohta, Nobuhiro (Research Institute for Electronic Science (RIES), Hokkaido University)
  • Received : 2015.03.18
  • Accepted : 2015.03.27
  • Published : 2015.03.01

Abstract

The time-resolved photoexcitation dynamics of electrical conductivity of the magnetic organic superconductor ${\lambda}-(BETS)_2Fe_{0.45}Ga_{0.55}Cl_4$ has been studied with a nanosecond visible laser pulse at its three different phases, i. e., metallic phase, superconducting phase and insulating phase. A transient increase of the resistance is induced by photoirradiation at all the temperatures measured for all three phases, but the decay profile shows a significant temperature dependence. The relaxation rate in the metallic and insulating phase are different from each other, and the decay time is relatively faster and almost constant in the metallic phase. However, a prolongation of the relaxation time is observed at temperature just around the narrow superconducting phase. Nonbolometric (nonthermal) origin of the observed photoresponse of the electrical conductivity is confirmed in the superconducting phase.

Keywords

References

  1. Ohkoshi, S.; Tsunobuchi, Y.; Matsuda, T.; Hashimoto, K.; Namai, A.; Hakoe, F.; Tokoro, H. Nat. Chem. 2010, 2, 539-545. https://doi.org/10.1038/nchem.670
  2. Ishikawa, T.; Fukazawa, N.; Matsubara, Y.; Nakajima, R.; Onda, K.; Okimoto, Y.; Koshihara, S.; Lorenc, M.; Collet, E.; Tamura, M.; Kato, R. Phys. Rev. B 2009, 80, 115108. https://doi.org/10.1103/PhysRevB.80.115108
  3. Ueno, K.; Nakamura, S.; Shimotani, H.; Ohtomo, A.; Kimura, N.; Nojima, T.; Aoki, Y.; Iwasa, H.; Kawasaki, M. Nat. Mater. 2008, 7, 855-858. https://doi.org/10.1038/nmat2298
  4. Stoliar, P.; Rozenberg, M.; Janod, E.; Corraze, B.; Tranchant, J.; Cario, L. Phys. Rev. B 2014, 90, 045146. https://doi.org/10.1103/PhysRevB.90.045146
  5. Iimori, T.; Ohta, N. J. Phys. Chem. C 2014, 118, 7251-7260. https://doi.org/10.1021/jp4126123
  6. Koshihara, S.; Tokura, Y.; Mitani, T.; Saito, G.; Koda, T. Phys. Rev. B 1990, 42, 6853-6856. https://doi.org/10.1103/PhysRevB.42.6853
  7. Collet, E.; Lemee-Cailleau, M. H.; Buron-Le Cointe, M.; Cailleau, H.; Wulff, M.; Luty, T.; Koshihara, S. Y.; Meyer, M.; Toupet, L.; Rabiller, P.; Techert, S. Science, 2003, 300, 612-615. https://doi.org/10.1126/science.1082001
  8. Iwai, S.; Yamamoto, K.; Kashiwazaki, A.; Hiramatsu, F.; Nakaya, H.; Kawakami, Y.; Yakushi, K.; Okamoto, H.; Mori, H.; Nishio, Y. Phys. Rev. Lett. 2007, 98, 097402. https://doi.org/10.1103/PhysRevLett.98.097402
  9. Iimori, T.; Naito, T.; Ohta, N. J. Am. Chem. Soc. 2007, 129, 3486-3487. https://doi.org/10.1021/ja068791d
  10. Iimori, T.; Naito, T.; Ohta, N. J. Phys. Chem. C 2009, 113, 4654-4661. https://doi.org/10.1021/jp810351c
  11. Iimori, T.; Ohta, N.; Naito, T. Appl. Phys. Lett. 2007, 90, 262103. https://doi.org/10.1063/1.2749845
  12. Tajima, N.; Fujisawa, J.; Naka, N.; Ishihara, T.; Kato, R.; Nishio, Y.; Kajita, K. J. Phys. Soc. Jpn. 2005, 74, 511-514. https://doi.org/10.1143/JPSJ.74.511
  13. Sabeth, F.; Iimori, T.; Ohta, N. J. Am. Chem. Soc. 2012, 134, 6984-6986. https://doi.org/10.1021/ja302725e
  14. Iimori, T.; Sabeth, F.; Naito, T.; Ohta, N. J. Phys. Chem. C 2011, 115, 23998-24003. https://doi.org/10.1021/jp2088912
  15. Iimori, T.; Naito, T.; Ohta, N. J. Phys. Chem. C 2010, 114, 9070-9075. https://doi.org/10.1021/jp912204n
  16. Kobayashi, H.; Kobayashi, A.; Cassoux, P. Chem. Soc. Rev. 2000, 29, 325-333. https://doi.org/10.1039/b002095h
  17. Kobayashi, A.; Udagawa, T.; Tomita, H.; Naito, T.; Kobayashi, H. Chem. Lett. 1993, 22, 2179. https://doi.org/10.1246/cl.1993.2179
  18. Tokumoto, M.; Naito, T.; Kobayashi, H.; Kobayashi, A.; Laulhin, V.; Brossard, V. N.; Cassoux, L. Synth. Met. 1997, 86, 2161. https://doi.org/10.1016/S0379-6779(97)81076-4
  19. Uji, S.; Shinagawa, H.; Terashima, T.; Yakabe, T.; Terai, Y.; Tokumoto, M.; Kobayashi, A.; Tanaka, H.; Kobayashi, H. Nature, 2001, 410, 908-910. https://doi.org/10.1038/35073531
  20. Kobayashi, H.; Cui, H. B.; Kobayashi, A. Chem. Rev. 2004, 104, 5265-5288. https://doi.org/10.1021/cr030657d
  21. Kobayashi, H.; Sato, A.; Arai, E.; Akutsu, H.; Kobayashi, K.; Cassoux, P. J. Am. Chem. Soc. 1997, 119, 12392. https://doi.org/10.1021/ja973068w
  22. Sato, A.; Ojima, E.; Akutsu, H.; Kobayashi, H.; Kobayashi, A.; Cassoux, P. Chem. Lett. 1998, 27, 673-674. https://doi.org/10.1246/cl.1998.673
  23. Sato, A.; Ojima, E.; Akutsu, H.; Nakazawa, Y.; Kobayashi, H.; Tanaka, H.; Kobayashi, A.; Cassoux, P. Phys. Rev. B 2000, 61, 111. https://doi.org/10.1103/PhysRevB.61.111
  24. Hohenberg, P. C.; Halperin, B. I. Rev. Mod. Phys. 1977, 49, 435. https://doi.org/10.1103/RevModPhys.49.435
  25. Iwai, S.; Yamamoto, K.; Kashiwazaki, A.; Hiramatsu, F.; Nakaya, H.; Kawakami, Y.; Yakushi, K.; Okamoto, H.; Mori, H.; Nishio, Y. Phys. Rev. Lett. 2007, 98, 097402 https://doi.org/10.1103/PhysRevLett.98.097402
  26. Zeldof, E.; Amer, N. M.; Koren, G.; Gupta, A. Phys. Rev. B 1989, 39, 9712-9714. https://doi.org/10.1103/PhysRevB.39.9712
  27. Averitt, R. D.; Taylor, A. J. J. Phys. Condens. Matter. 2002, 14, 1357-1390. https://doi.org/10.1088/0953-8984/14/50/203