• Title/Summary/Keyword: Relaxation Coefficient

Search Result 121, Processing Time 0.03 seconds

N.M.for the Effect of P.T. on Resicual Stress Relaxation (잔류응력 완화에 미치는 상변태의 수치적 모델링)

  • 장경복;손금렬;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.84-89
    • /
    • 1999
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions. i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. consequently, in this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis.

  • PDF

Stress Relaxation Coefficient Method for Concrete Creep Analysis of Composite Sections (합성단면의 콘크리트 크리프 해석을 위한 이완계수법)

  • Yon, Jung-Heum;Kyung, Tae-Hyun;Kim, Da-Na
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.77-86
    • /
    • 2011
  • The concrete creep deformation of a hybrid composite section can cause additional deformation of the composite section and the stress relaxation of pre-compressive stress on the concrete section due to partial restraint of the deformation. In this study, the stress relaxation coefficient method (SRCM) is derived for simple analysis of complicate hybrid or composite sections for engineering purpose. Also, an equation of the stress relaxation coefficient (SRC) required for the SRCM is proposed. The SRCM is derived with the parameters of a creep coefficient, section and loading properties using the same method as the constant-creep step-by-step method (CC-SSM). The errors of the SRCM is improved by using the proposed SRC equation than the average SRC's which were estimated from the CC-SSM. The root mean square error (RMSE) of the SRCM with the proposed SRC equation for concrete with creep coefficient less than 3 was less than 1.2% to the creep deformation at the free condition and was 3.3% for the 99% reliability. The proposed SRC equation reflects the internal restraint of composite sections, and the effective modulus of elasticity computed with the proposed SRC can be used effectively to estimate the rigidity of a composite section in a numerical analysis which can be applied in analysis of the external restrain effect of boundary conditions.

Ultrasonic Velocity and Absorption Measurements in an Aqueous Solution of Poly(sodium 4-styrenesulfonate)

  • Rae Jong-Rim
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.559-563
    • /
    • 2004
  • Both the ultrasonic velocity at 3 MHz and the absorption coefficient in the frequency range from 0.2 to 2 MHz were measured for aqueous solutions of poly(sodium 4-styrenesulfonate) over the concentration range from 5 to $25\%$ (by weight). The pulse echo overlap method was employed to measure the ultrasonic velocity over the temperature range from 10 to $90^{\circ}C;$ the high-Q ultrasonic resonator method was used for the measurement of the absorption coefficient at $20^{\circ}C.$ The velocities exhibited their maximum values at ca. 55, 59, 63, 67, and $71^{\circ}C.$ for the 25, 20, 15, 10, and $5\%$ solutions, respectively. The velocity increased with respect to the poly(sodium 4-styrene-sulfonate) concentration at a given temperature. A study of the concentration dependence of the both the relaxation frequency and amplitude indicated that the relaxation at ca. 200 kHz is related to structural fluctuations of the polymer molecules, such as the segmental motions of the polymer chains and that the relaxation at ca. 1 MHz resulted from the proton transfer reactions of the oxygen sites of $SO_3.$ Both the absorption and the shear viscosity increase upon increasing the polymer concentration, but they decrease upon increasing the temperature.

Numerical Modeling of the Transformation Temperature Effect on the Relaxation of Welding Residual Stress (용접 잔류응력 완화에 미치는 변태 온도의 영향에 관한 수치적 모델링)

  • Jang, Gyoung-Bok;Kang, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2552-2559
    • /
    • 2000
  • Most of ferrous b.c.c weld materials have martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is necessary to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions, i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. In this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis. In addition to, since the transformation temperature changes by the kind and control of alloying elements, the steel with many kinds of transformation temperature were selected and the effect of transformation on stress releasement was investigated by the numerical procedures considering phase transformation.

Angular Dispersion-type Nonscanning Fabry-Perot Interferometer Applied to Ethanol-water Mixture

  • Ko, Jae-Hyeon;Kojima, Seiji
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.261-266
    • /
    • 2009
  • The angular dispersion-type non-scanning Fabry-Perot was applied to an ethanol-water mixture in order to investigate its acoustic properties such as the sound velocity and the absorption coefficient. The scattered light from the mixture was analyzed by using the charge-coupled-device area detector, which made the measurement time much shorter than that obtained by using the conventional scanning tandem multi-pass Fabry-Perot interferometer. The sound velocity showed a deviation from ultrasonic sound velocities at low temperatures accompanied by the increase in the absorption coefficient, indicating acoustic dispersion due to the coupling between the acoustic waves and some relaxation process. Based on a simplified viscoelastic theory, the temperature dependence of the relaxation time was obtained. The addition of water molecules to ethanol reduced the relaxation time, consistent with dielectric measurements. The present study showed that the angular dispersion-type Fabry-Perot interferometer combined with an area detector could be a very powerful tool in the real-time monitoring of the acoustic properties of condensed matter.

An Experimental study on the Viscoelastic Coefficient of Polystyrene (폴리스티렌의 점탄성 계수에 관한 실험적 연구)

  • Yoon, Kyung-Hwan;Yu, Bong-Kun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.751-754
    • /
    • 2000
  • Stress relaxation experiments were performed to obtain the material properties to be used in the linear viscoelastic study. Master curve of the modulus of polystyrene were obtained by using the time-temperature superposition principle. Because Shyu and Tobolsky's tensile relaxation modulus master curve or Polystyrene material showed very large difference, in-house data were required to calculate the residual stresses in injection-molded products more accurately. Our own experimental data showed that the master curve Shyu's data should be shifted about two orders in material time coordinate.

  • PDF

Relaxation phenomena of electro-optic coefficient in P(VDF-TrFE) copolymers (강유전성 고분자인 P(VDF-TrFE)공중합체의 전기광학계수의 완화현상)

  • 임종선;박광서
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.225-229
    • /
    • 2001
  • Relaxation phenomena of the electro-optic coefficient in ferroelectric copolymer P (VDF- TrFE) were studied. The electro-optic coefficient of copolymers was measured by simple reflection method and the decay curves were fitted by KWW stretched exponentials. The copolymers poled near Tc. Were shown to be more stable than the copolymer poled at lower temperatures. Further, the relaxation time t depending on temperature was found to follow Arrhenius behavior and it was found that the activation energy of 50/50 mol% P (VDF-TrFE) copolymer is larger than that of 72/28 mol% copolymer. As a result, the ferroelectric copolymer with VDF of 50 mol% is was more stable.stable.

  • PDF

Correlations Among Objective Measurements of Spasticity in Patients With Brain Lesions

  • Kim, Yong-Wook
    • Physical Therapy Korea
    • /
    • v.14 no.4
    • /
    • pp.7-13
    • /
    • 2007
  • The purpose of this study was to investigate correlations among objective measurements of spasticity in patients with brain lesions. Thirty-two stroke and traumatic brain injury subjects participated in the study. Spasticity was quantified using the knee first flexion angle, relaxation index obtained from a pendulum drop test, and the amplitude of a knee tendon reflex test. Pearson's product correlation coefficient was used to examine relationships among these measurements of spasticity. There was a significant positive correlation between the relaxation index and knee first flexion angle in patients with brain lesions (r=.895, p<.01). There was also significant negative correlation between the amplitude of knee tendon reflex and relaxation index (r=-.612, p<.01), and between amplitude and knee first flexion angle (r=-.537, p<.01). Thus, it is possible to use the knee first flexion angle as an objective measure of spasticity, rather than relaxation index, which is more complicated to obtain. Further studies are needed to explore the effects of functional improvement and long-lasting carryover effects of spasticity using a simple objective measure such as the knee first flexion angle from a pendulum test.

  • PDF

Microwave Dielectric Characterization of Binary Mixtures of 3-Nitrotoluene with Dimethylacetamide, Dimethylformamide and Dimethylsulphoxide

  • Chaudhari, Ajay;Chaudhari, H.C.;Mehrotra, S.C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1403-1407
    • /
    • 2004
  • Dielectric relaxation measurements on 3-nitrotoluene (3-NT) mixture of dimethylacetamide (DMA), dimethylformamide (DMF) and dimethysulphoxide (DMSO) have been carried out across the entire concentration range using Time domain reflectometry technique at 15, 25, 35 and $45^{\circ}C$ over the frequency range from 10 MHz to 20 GHz. For all the mixtures, only one dielectric loss peak was observed in this frequency range and the relaxation in these mixtures can be well described by a single relaxation time using Debye model. Bilinear calibration method is used to obtain complex permittivity ${\varepsilon}^{*}({\omega})$ from complex reflection coefficient ${\rho}^{*}({\omega})$ over frequency range 10 MHz to 20 GHz. The excess permittivity, excess inverse relaxation time, Kirkwood correlation factor, molar energy of activation are also calculated for these mixtures to study the solute-solvent interaction.

Solvent Effect on Stress Relaxation of PET Filament Fibers and Self Diffusion of Crystallites

  • Nam Jeong Kim;Eung Ryul Kim;Sang Joon Hahn
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.468-473
    • /
    • 1991
  • Viscoelastic properties of PET filament fibers on stress relaxation were investigated in the solvents of $H_2$O, 0.05% NaOH and 50% DMF using an Instron (UTM4-100 Tensilon) with solvent chamber. The theoretical stress relaxation equation derived by applying the Ree-Eyring's hyperbolic sine law to dashpot of three element non-Newtonian model was applied to the experimental stress relaxation curves, and the model parameters $G_1,G_2$, ${\alpha}$ and ${\beta}$ were obtained. By analyzing temperature dependency of the relaxation time, the values of activation entropy, activation enthalpy and activation free energy for flow in PET filament fiber were evaluated, the activation free energy being about 25.7 kcal/mol. The self diffusion coefficient and hole distance were obtained from parameters ${\alpha}$, ${\beta}$ and crystallite size in order to study the self diffusion and the orientation of crystallites in amorphous region and the effect of solvent.