• 제목/요약/키워드: Relativistic Jets

검색결과 31건 처리시간 0.02초

A Study of Kinetic Effect on Relativistic Shock using 3D PIC simulation

  • 최은진;민경욱;최청림
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.67.1-67.1
    • /
    • 2012
  • Shocks are evolved when the relativistic jets in active galactic nuclei (AGNs), black hole binaries, supernova remnants (SNR) and gamma-ray bursts (GRBs) interact with the surrounding medium. The high energy particles are believed to be accelerated by the diffusive shock acceleration and the strong magnetic field is generated by Weibel instability in the shock. When ultrarelativistic electrons with strong magnetic field cool by the synchrotron emission, the radiation is observed in gamma-ray burst and the near-equipartitioned magnetic field in the external shock delays the afterglow emission. In this paper, we performed the 3D particle-in-cell (PIC) simulations to understand the characteristics of these relativistic shock and particle acceleration. Forward and reverse shocks are shaped while the unmagnetized injecting jet interacts with the unmagnetized ambient medium. Both upstream and downstream become thermalized and the particle accelerations are shown in each transition region of the shock structures.

  • PDF

Proving the Evolution of Relativistic Jet of Radio-Loud AGN, OVV 1633+382

  • Ro, Hyunwook;Sohn, Bong Won;Chung, Aeree;Krichbaum, Thomas P.
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.37.1-37.1
    • /
    • 2015
  • It is suggested that relativistic jets associated with active galactic nuclei (AGNs) can have great impacts on the evolution of the host galaxy. However, the physical properties of AGN jets including the formation mechanism are not well known to date, and hence the AGN feedback on the host galaxy is yet poorly understood. OVV 1633+382 as a highly variable AGN source (a.k.a. blazer) with a compact core and very well developed jet components is an excellent laboratory to study the jet formation mechanism of radio-loud AGN. Near 2002, a major flare was reported at mm wavelength with a dramatic increase of the flux, which is likely to be followed by a dense and bright outflow. In order to probe the evolution of the innermost region of this radio-loud AGN, we have monitored using the Very Large Baseline Array (VLBA) and the Effelsberg 100m single-dish radio telescope in 12 epochs from 2002 and 2005. The observations were conducted at 22, 43 and 86 GHz in full polarization mode. In this work, we present the intensity and spectral index maps at 22 and 43 GHz from our monitoring observations. We probe the kinematics and geometry of individual jet components to discuss the evolution of the jet.

  • PDF

RE-ACCELERATION OF FOSSIL ELECTRONS BY SHOCKS ENCOUNTERING HOT BUBBLES IN THE OUTSKIRTS OF GALAXY CLUSTERS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제51권6호
    • /
    • pp.185-195
    • /
    • 2018
  • Galaxy clusters are known to host many active galaxies (AGNs) with radio jets, which could expand to form radio bubbles with relativistic electrons in the intracluster medium (ICM). It has been suggested that fossil relativistic electrons contained in remnant bubbles from extinct radio galaxies can be re-accelerated to radio-emitting energies by merger-driven shocks via diffusive shock acceleration (DSA), leading to the birth of radio relics detected in clusters. In this study we assume that such bubble consist primarily of thermal gas entrained from the surrounding medium and dynamically-insignificant amounts of relativistic electrons. We also consider several realistic models for magnetic fields in the cluster outskirts, including the ICM field that scales with the gas density as $B_{ICM}{\infty}n^{0.5}_{ICM}$. Then we perform time-dependent DSA simulations of a spherical shock that runs into a lower-density but higher-temperature bubble with the ratio $n_b/n_{ICM}{\approx}T_{ICM}/T_b{\approx}0.5$. We find that inside the bubble the shock speed increases by about 20 %, but the Mach number decreases by about 15% in the case under consideration. In this re-acceleration model, the observed properties of a radio relic such as radio flux, spectral index, and integrated spectrum would be governed mainly by the presence of seed relativistic electrons and the magnetic field profile as well as shock dynamics. Thus it is crucial to understand how fossil electrons are deposited by AGNs in the ICM and how the downstream magnetic field evolves behind the shock in detailed modeling of radio relics.

INTRINSIC BRIGHTNESS TEMPERATURES OF COMPACT RADIO JETS AS A FUNCTION OF FREQUENCY

  • Lee, Sang-Sung
    • 천문학회지
    • /
    • 제47권6호
    • /
    • pp.303-309
    • /
    • 2014
  • We present results of our investigation of the radio intrinsic brightness temperatures of compact radio jets. The intrinsic brightness temperatures of about 100 compact radio jets at 2, 5, 8, 15, and 86 GHz are estimated based on large VLBI surveys conducted in 2001-2003 (or in 1996 for the 5 GHz sample). The multi-frequency intrinsic brightness temperatures of the sample of jets are determined by a statistical method relating the observed brightness temperatures with the maximal apparent jet speeds, assuming one representative intrinsic brightness temperature for a sample of jets at each observing frequency. By investigating the observed brightness temperatures at 15 GHz in multiple epochs, we find that the determination of the intrinsic brightness temperature for our sample is affected by the flux density variability of individual jets at time scales of a few years. This implies that it is important to use contemporaneous VLBI observations for the multi-frequency analysis of intrinsic brightness temperatures. Since our analysis is based on the VLBI observations conducted in 2001-2003, the results are not strongly affected by the flux density variability. We find that the intrinsic brightness temperature $T_0$ increases as $T_0{\propto}{\nu}^{\xi}_{obs}$ with ${\xi}=0.7$ below a critical frequency ${\nu}_c{\approx}9GHz$ where the energy loss begins to dominate the emission. Above ${\nu}_c$, $T_0$ decreases with ${\xi}=-1.2$, supporting the decelerating jet model or particle cascade model. We also find that the peak value of $T_0{\approx}3.4{\times}10^{10}$ K is close to the equipartition temperature, implying that the VLBI cores observable at 2-86 GHz may be representing jet regions where the magnetic field energy dominates the total energy in jets.

Understanding the physical environment of relativistic jet from 3C 279 using its spectral and temporal information

  • Yoo, Sung-Min;Lee, Sang-Sung;An, Hongjun;Kim, Sang-Hyun;Lee, Jee Won;Hodgson, Jeffrey A.;Kang, Sincheol
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.35.3-35.3
    • /
    • 2019
  • Blazars are a subclass of active galactic nuclei (AGNs) with relativistic jets aligned with our line of sight. The jet physics is yet to be understood, but can be studied with blazar variability (e.g., flares). The highly variable blazar 3C 279 has shown a general decline of its radio flux density since 2013, but the flux density has been increasing since 2017. To better understand physical properties of 3C 279 related with the flux variations, we analyze multi-frequency new radio data obtained with Korean VLBI Network (KVN), as well as archival data from Owens Valley Radio Observatory (OVRO) and Submillimeter Array (SMA). We measure the radio spectral variability and infer the relativistic jet properties of 3C 279. The high-cadence OVRO and SMA observations are used to construct detailed light curves of the source, and KVN data supplement the spectral coverage and allow us to locate the spectral break frequencies precisely. In this talk, we present our analysis results and interpret them using a blazar jet model.

  • PDF

INTRINSIC BRIGHTNESS TEMPERATURE OF COMPACT RADIO SOURCES AT 86GHZ

  • Lee, Sang-Sung
    • 천문학회지
    • /
    • 제46권6호
    • /
    • pp.243-251
    • /
    • 2013
  • We present results on the intrinsic brightness temperature of a sample of compact radio sources observed at 86 GHz using the Global Millimeter VLBI Array. We use the observed brightness temperatures at 86 GHz and the observed superluminal motions at 15 GHz for the sample in order to constrain the characteristic intrinsic brightness temperature of the sample. With a statistical method for studying the intrinsic brightness temperatures of innermost jet cores of compact radio sources, assuming that all sources have the same intrinsic brightness temperature and the viewing angles of their jets are around the critical value for the maximal apparent speed, we find that sources in the sample have a characteristic intrinsic brightness temperature, $T_0=4.8^{+2.6}_{-1.5}{\times}10^9K$, which is lower than the equipartition temperature for the condition that the particle energy equals to the magnetic field energy. Our results suggest that the VLBI cores seen at 86 GHz may be representing a jet region where the magnetic field energy dominates the total energy in the jet.

Physical mechanism of gamma-ray bursts: recent breakthroughs

  • 엄정휘
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.39.1-39.1
    • /
    • 2018
  • Although it is agreed that the gamma-ray bursts (GRBs) invoke highly relativistic jets with bulk Lorentz factors of a few hundreds, the exact physical mechanism producing such powerful gamma-rays still remains debated. Three outstanding and important questions in the field concern (1) the composition of GRB jets (i.e., matter-dominated vs Poynting-flux-dominated), (2) the involved radiative process responsible for the observed gamma-rays (i.e., synchrotron mechanism vs photospheric radiation), and (3) the distance of the emitting region from the central engine where the prompt gamma-rays are released (i.e., ~10^12 cm vs 10^14 cm vs 10^16 cm). I will present recent important breakthroughs that we have made, which answer these three questions.

  • PDF

Radiation Hydrodynamics of 2-D Accretion Disks

  • OKUDA TORU
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.251-254
    • /
    • 2001
  • To examine the structure and dynamics of thick accretion disks, we use a two-dimensional viscous hydrodynamic code coupled with radiation transport. The $\alpha$-model and the full viscous stress-tensor description for the kinematic viscosity are used. The radiation transport is treated in the gray, flux-limited diffusion approximation. The finite difference methods used are based on an explicit-implicit method. We apply the numerical code to the Super-Eddington black-hole model for SS 433.@The result for a very small viscosity parameter a reproduces well the characteristic features of SS 433, such as the relativistic jets with $\~$0.26c, the small collimation degree of the jets, the mass-outflow rate of ${\ge}5{\times}10^{-7}M{\bigodot}yr^{-1}$, and the formation of the X-ray iron emission lines.

  • PDF

Investigation of the Jets of the Blazar 3C 279 with Korean VLBI Network (KVN) 22-129 GHz Observations

  • Yoo, Sungmin;Lee, Sang-Sung;Kim, Sang-Hyun;An, Hongjun
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권4호
    • /
    • pp.193-202
    • /
    • 2021
  • We present analysis results of Korean VLBI Network (KVN) four-band data for the highly variable blazar 3C 279. We measured the 22, 43, 86, and 129 GHz flux densities and spectral indices of the source using contemporaneous data taken over 5.6 years. We used the discrete correlation function to investigate correlations between the radio emission properties and those measured in the optical (2 × 1014 - 1.5 × 1015 Hz), X-ray (0.3-10 keV), and gamma-ray (0.1-300 GeV) bands. We found a significant correlation between the radio spectral index and gamma-ray flux without a time delay and interpreted the correlation using an extended jet scenario for blazar emission.

F-GAMMA with KVN

  • 박송연;손봉원
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.42.2-42.2
    • /
    • 2013
  • The F-GAMMA (FERMI-GST AGN Multi-frequency Monitoring Alliance) project is a program for the monthly monitoring of the broad-band spectra of currently about 90 selected Fermi-GST AGNs. F-GAMMA utilizes several facilities in cm, mm, sub-mm, infrared and optical bands, achieving an unprecedented coverage for the study of the spectral evolution of powerful relativistic jets in AGNs. The KVN joined the F-GAMMA project in May 2011, aiming to monitor flux density at 22 and 43 GHz. We present the preliminary results of flux density variability, evolution of spectral index, and modulation index.

  • PDF