Browse > Article
http://dx.doi.org/10.5140/JASS.2021.38.4.193

Investigation of the Jets of the Blazar 3C 279 with Korean VLBI Network (KVN) 22-129 GHz Observations  

Yoo, Sungmin (Department of Astronomy and Space Sciences, Chungbuk National University)
Lee, Sang-Sung (Korea Astronomy and Space Science Institute)
Kim, Sang-Hyun (Korea Astronomy and Space Science Institute)
An, Hongjun (Department of Astronomy and Space Sciences, Chungbuk National University)
Publication Information
Journal of Astronomy and Space Sciences / v.38, no.4, 2021 , pp. 193-202 More about this Journal
Abstract
We present analysis results of Korean VLBI Network (KVN) four-band data for the highly variable blazar 3C 279. We measured the 22, 43, 86, and 129 GHz flux densities and spectral indices of the source using contemporaneous data taken over 5.6 years. We used the discrete correlation function to investigate correlations between the radio emission properties and those measured in the optical (2 × 1014 - 1.5 × 1015 Hz), X-ray (0.3-10 keV), and gamma-ray (0.1-300 GeV) bands. We found a significant correlation between the radio spectral index and gamma-ray flux without a time delay and interpreted the correlation using an extended jet scenario for blazar emission.
Keywords
blazar (3C 279); relativistic jets; synchrotron self-absorption (SSA); variability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rieger FM, Aharonian F, Probing the central black hole in M87 with gamma-rays, Mod. Phys. Lett. A. 27, 1230030. (2012). https://doi.org/10.1142/S0217732312300303   DOI
2 Urry CM, Padovani P, Unified schemes for radio-loud active galactic nuclei, Publ. Astron. Soc. Pac. 107, 803 (1995). https://doi.org/10.1086/133630   DOI
3 Yoo S, An H, Spectral variability of the blazar 3C 279 in the optical to X-ray band during 2009-2018, Astrophys. J. 902, 2 (2020). https://doi.org/10.3847/1538-4357/abb3c1   DOI
4 Blandford RD, Payne DG, Hydromagnetic flows from accretion discs and the production of radio jets, Mon. Not. R. Astron. Soc. 199, 883-903 (1982). https://doi.org/10.1093/mnras/199.4.883   DOI
5 Blandford R, Meier D, Readhead A, Relativistic jets from active galactic nuclei, Annu. Rev. Astron. Astrophys. 57, 467-509 (2019). https://doi.org/10.1146/annurevastro-081817-051948   DOI
6 Ackermann M, Ajello M, An H, Baldini L, Barbiellini G, et al., Contemporaneous broadband observations of three highredshift BL Lac objects, Astrophys. J. 820, 72 (2016).   DOI
7 Algaba J, Lee SS, Bindu R, Kim DW, Kino M, et al., Exploring the variability of the flat-spectrum radio source 1633+382. II. physical properties, Astrophys. J. 859, 128 (2018). https://doi.org/10.3847/1538-4357/aac2e7   DOI
8 An H, Romani RW, Sed constraints on the highest-z blazar jet: QSO J0906+6930, Astrophys. J. 856, 105 (2018). https://doi.org/10.3847/1538-4357/aab435   DOI
9 Blandford RD, Znajek RL, Electromagnetic extraction of energy from Kerr black holes, Mon. Not. R. Astron. Soc. 179, 433-456 (1977). https://doi.org/10.1093/mnras/179.3.433   DOI
10 An H, Romani RW, X-ray constraints on the spectral energy distribution of the z = 5.18 blazar SDSS J013127.34-032100.1, Astrophys. J. 904, 27 (2020). https://doi.org/10.3847/1538-4357/abbb91   DOI
11 Lee JW, Lee SS, Algaba JC, Hodgson J, Kim JY, et al., Interferometric monitoring of gamma-ray bright AGNs: OJ 287, Astrophys. J. 902, 104 (2020). https://doi.org/10.3847/1538-4357/abb4e5   DOI
12 Hodgson JA, Lee SS, Zhao GY, Algaba JC, Yun Y, et al., The automatic calibration of Korean VLBI network data, J. Korean Astron. Soc. 49, 137-144 (2016). https://doi.org/10.5303/JKAS.2016.49.4.137   DOI
13 Connolly SD, 2015, A Python code for the Emmanoulopoulos et al. [arXiv:1305.0304], light curve simulation algorithm [Internet], viewed 2021 Feb 20, available from: https://arxiv.org/abs/1503.06676
14 Hodgson JA, Rani B, Lee SS, Algaba JC, Kino M, et al., KVN observations reveal multiple γ-ray emission regions in 3C 84? Mon. Not. R. Astron. Soc. 475, 368-378 (2018). https://doi.org/10.1093/mnras/stx3041   DOI
15 Hogbom JA, Aperture synthesis with a non-regular distribution of interferometer baselines, Astron. Astrophys. Suppl. 15, 417 (1974).
16 Hovatta T, Nieppola E, Tornikoski M, Valtaoja E, Aller MF, et al., Long-term radio variability of AGN: flare characteristics, Astron. Astrophys. 485, 51-61 (2008). https://doi.org/10.1051/0004-6361:200809806   DOI
17 Emmanoulopoulos D, McHardy IM, Papadakis IE, Generating artificial light curves: revisited and updated, Mon. Not. R. Astron. Soc. 433, 907-927 (2013). https://doi.org/10.1093/mnras/stt764   DOI
18 Fermi, 2021, 3C 279 [Internet], viewed 2021 Feb 20, available from: https://fermi.gsfc.nasa.gov/ssc/data/access/lat/msl_lc/source/3C_279
19 Hayashida M, Nalewajko K, Madejski GM, Sikora M, Itoh R, et al., Rapid variability of blazar 3C 279 during flaring states in 2013-2014 with joint Fermi-LAT, NuSTAR, Swift, and ground-based multi-wavelength observations, Astrophys. J. 807, 79 (2015). https://doi.org/10.1088/0004-637X/807/1/79   DOI
20 Larionov VM, Jorstad SG, Marscher AP, Villata M, Raiteri CM., et al., Multiwavelength behaviour of the blazar 3C 279: decadelong study from γ-ray to radio, Mon. Not. R. Astron. Soc. 492, 3829-3848 (2020).   DOI
21 Lee SS, Wajima K, Algaba JC, Zhao GY, Hodgson JA., et al., Interferometric monitoring of gamma-ray bright AGNs. I. the results of single-epoch multifrequency observations, Astrophys. J. Suppl. Ser. 227, 8 (2016). https://doi.org/10.3847/0067-0049/227/1/8   DOI
22 Rani B, Krichbaum TP, Lee SS, Sokolovsky K, Kang S, et al., Probing the gamma-ray variability in 3C 279 using broadband observations, Mon. Not. R. Astronl. Soc. 464, 418-427 (2017). https://doi.org/10.1093/mnras/stw2342   DOI
23 Hovatta T, Valtaoja E, Tornikoski M, Lahteenmaki A, Doppler factors, Lorentz factors and viewing angles for quasars, BL Lacertae objects and radio galaxies, Astron. Astrophys. 494, 527-537 (2009). https://doi.org/10.1051/0004-6361:200811150   DOI
24 Kiehlmann S, Savolainen T, Jorstad SG, Sokolovsky KV, Schinzel FK, et al., Polarization angle swings in blazars: the case of 3C 279, Astron. Astrophys. 590, A10 (2016).   DOI
25 Liodakis I, Marchili N, Angelakis E, Fuhrmann L, Nestoras I, et al., F-GAMMA: variability Doppler factors of blazars from multiwavelength monitoring, Mon. Not. R. Astron. Soc. 466, 4625-4632 (2017). https://doi.org/10.1093/mnras/stx002   DOI
26 Sokolov A, Marscher AP, Mchardy IM, Synchrotron self-compton model for rapid nonthermal flares in blazars with frequencydependent time lags, Astrophys. J. 613, 725-746 (2004). https://doi.org/10.1086/423165   DOI
27 Kim JY, Krichbaum TP, Broderick AE, Wielgus M, Blackburn L, et al., Event horizon telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution, Astron. Astrophys. 640, A69 (2020).   DOI
28 Lee S, Petrov L, Byun D, Kim J, Jung T, et al., Early science with the Korean VLBI network: evaluation of system performance, Astron. J. 147, 77 (2014). https://doi.org/10.1088/0004-6256/147/4/77   DOI
29 Lister ML, Aller MF, Aller HD, Hodge MA, Homan DC, et al., MOJAVE. XV. VLBA 15 GHz total intensity and polarization maps of 437 parsec-scale AGN jets from 1996 to 2017, Astrophys. J. Suppl. Ser. 234, 12 (2018). https://doi.org/10.3847/1538-4365/aa9c44   DOI
30 Marziani P, Sulentic JW, Dultzin-Hacyan D, Calvani M, Moles M, Comparative analysis of the high- and low-ionization lines in the broad-line region of active galactic nuclei, Astrophys. J. Suppl. Ser. 104, 37 (1996). https://doi.org/10.1086/192291   DOI
31 Turler M, Courvoisier TJL, Paltani S, Modelling 20 years of synchrotron flaring in the jet of 3C 273, Astron. Astrophys. 361, 850-862 (2000).
32 Lobanov AP, Krichbaum TP, Witzel A, Zensus JA, Dual-frequency VSOP imaging of the jet in S5 0836+710, Publ. Astron. Soc. Jpn. 58, 253-259 (2006). https://doi.org/10.1093/pasj/58.2.253   DOI
33 MacDonald NR, Jorstad SG, Marscher AP, "Orphan" γ-ray flares and stationary sheaths of blazar jets, Astrophys. J. 850, 1 (2017). https://doi.org/10.3847/1538-4357/aa92c8   DOI
34 Max-Moerbeck W, Richards JL, Hovatta T, Pavlidou V, Pearson TJ, et al., A method for the estimation of the significance of cross-correlations in unevenly sampled red-noise time series, Mon. Not. R. Astron. Soc. 445, 437-459 (2014). https://doi.org/10.1093/mnras/stu1707   DOI
35 Murase K, Dermer CD, Takami H, Migliori G, Blazars as ultra-high-energy cosmic-ray sources: implications for TeV gamma-ray observations, Astrophys. J. 749, 63 (2012). https://doi.org/10.1088/0004-637X/749/1/63   DOI