• 제목/요약/키워드: Relative wind direction

검색결과 104건 처리시간 0.029초

CORRECTION OF THE EFFECT OF RELATIVE WIND DIRECTION ON WIND SPEED DERIVED BY ADVANCED MICROWAVE SCANNING RADIOMETER

  • Konda, Masanori;Shibata, Akira
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.386-389
    • /
    • 2006
  • The sea surface wind speed (SSWS) derived by microwave radiometer can be contaminated by change of microwave brightness temperature owing to the angle between the sensor azimuth and the wind direction (Relative Wind Direction). We attempt to correct the contamination to the SSWS derived by Advanced Microwave Scanning Radiometer (AMSR) on Advanced Earth Observing Satellite II (ADEOS-II), by applying the method proposed by Konda and Shibata (2004). The improvement of accuracy of the SSWS estimation amounts to roughly 60% of the error caused by the RWD effect.

  • PDF

경사가 있는 지형의 거칠기 아층에서 풍향시어와 운동량 플럭스의 특성 (Characteristics of Wind Direction Shear and Momentum Fluxes within Roughness Sublayer over Sloping Terrain)

  • 이영희
    • 대기
    • /
    • 제25권4호
    • /
    • pp.591-600
    • /
    • 2015
  • We have analyzed wind and eddy covariance data collected within roughness sublayer over sloping terrain. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree. This study examines the directional wind shear for data collected at three levels in the lowest 10 m in the roughness sublayer. The wind direction shear is caused by drag of roughness element and terrain-induced motions at this site. Small directional shear occurs when wind speed at 10 m is strong and wind direction at 10 m is southerly which is the same direction as upslope flow near surface at this site during daytime. Correlation between vertical shear of lateral momentum and lateral momentum flux is smaller over steeply sloped surface compared to mildly sloped surface and lateral momentum flux is not down-gradient over steeply sloped surface. Quadrant analysis shows that the relative contribution of four quadrants to momentum flux depends on both surface slope and wind direction shear.

풍력발전기 증속기에 전달되는 풍하중 변동특성 연구 (A Study on Wind Load Variation Characteristics of Wind Turbine Gearbox)

  • 김정수;이형우;박노길;이동환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권2호
    • /
    • pp.267-275
    • /
    • 2012
  • 본 논문은 정상풍속과 돌발풍속을 수학적으로 모델링하고 풍향에 따라 전달되는 메인축에서의 전달모멘트를 조사하여 기어박스에 전달되는 풍하중의 특성을 파악하였다. 정상풍속은 지상에서 고도가 높아짐에 따라 속도가 증가하게 설정을 하였다. 풍하중에 의해서 메인축으로 전달되는 모멘트의 평균값과 하모닉값을 풍향 입사각을 $-45^{\circ}{\sim}45^{\circ}$로 변화를 주며 특성을 파악하였다. 또한 기어 트레인의 미스 얼라인먼트를 유발시키는 굽힘 모멘트의 특성을 파악하였다. 정상풍속모델에서는 블레이드의 3배수 주파수(3X)로 하는 토크의 가진이 생기며, 바람의 방향이 $+22.5^{\circ}$일 때 수평방향의 굽힘 모멘트가 주축으로 들어가는 토크의 50%수준으로 발생하는데 이는 수평방향으로의 탄성 축 휘임을 유발하여 치가 모서리에서 물림이 발생하게 하는 원인을 제공함을 알 수 있었다. 돌발풍속의 경우, 3X, 6X, 9X를 가진 주파수로 하는 토크의 가진이 바람의 방향이 +방향으로 커질수록 하모닉항의 상대 비율이 증가하였다.

Wind-induced vibration fragility of outer-attached tower crane to super-tall buildings: A case study

  • Lu, Yi;Zhang, Luo;He, Zheng;Feng, Fan;Pan, Feng
    • Wind and Structures
    • /
    • 제32권5호
    • /
    • pp.405-421
    • /
    • 2021
  • To gain insight into the wind-induced safety concerns associated with attached tower cranes during the construction of super-tall buildings, a 606 m level frame-core tube super-tall building is selected to investigate the wind-induced vibration response and fragility of an outer-attached tower crane at all stages of construction. The wind velocity time history samples are artificially generated and used to perform dynamic response analyses of the crane to observe the effects of wind velocity and wind direction under its working and non-working resting state. The adverse effects of the relative displacement response at different connection supports are also identified. The wind-resistant fragility curves of the crane are obtained by introducing the concept of incremental dynamic analysis. The results from the investigation indicate that a large relative displacement between the supports can substantially amplify the response of the crane at high levels. Such an effect becomes more serious when the lifting arm is perpendicular to the plane of the connection supports. The flexibility of super-tall buildings should be considered in the design of outer-attached tower cranes, especially for anchorage systems. Fragility analysis can be used to specify the maximum appropriate height of the tower crane for each performance level.

A Statistical Approach to Examine the Impact of Various Meteorological Parameters on Pan Evaporation

  • Pandey, Swati;Kumar, Manoj;Chakraborty, Soubhik;Mahanti, N.C.
    • 응용통계연구
    • /
    • 제22권3호
    • /
    • pp.515-530
    • /
    • 2009
  • Evaporation from surface water bodies is influenced by a number of meteorological parameters. The rate of evaporation is primarily controlled by incoming solar radiation, air and water temperature and wind speed and relative humidity. In the present study, influence of weekly meteorological variables such as air temperature, relative humidity, bright sunshine hours, wind speed, wind velocity, rainfall on rate of evaporation has been examined using 35 years(1971-2005) of meteorological data. Statistical analysis was carried out employing linear regression models. The developed regression models were tested for goodness of fit, multicollinearity along with normality test and constant variance test. These regression models were subsequently validated using the observed and predicted parameter estimates with the meteorological data of the year 2005. Further these models were checked with time order sequence of residual plots to identify the trend of the scatter plot and then new standardized regression models were developed using standardized equations. The highest significant positive correlation was observed between pan evaporation and maximum air temperature. Mean air temperature and wind velocity have highly significant influence on pan evaporation whereas minimum air temperature, relative humidity and wind direction have no such significant influence.

1994년 6월 서울지역 시정장애의 측정 및 분석 (Measurement and Analysis of Visibility lmpairment during June, 1994 in Seoul)

  • 백남준;이종훈;김용표;문길주
    • 한국대기환경학회지
    • /
    • 제12권4호
    • /
    • pp.407-419
    • /
    • 1996
  • Characteristics of visual air quality in Seoul have been investigated between June 13 and 21, 1994. Optical properties (extinction coefficient and particle scattering coefficient), meteorological parameters (relative humidity, temperature, wind speed, wind direction, and cloud cover), particle characteristics (mass size distribution, components) were measured and analyzed. During measurement periods, northwest wind with less than 2m/sec of wind speed deteriorates visibility. Effects of relative humidity are though to be not a direct factor which influence to visibility through the size change due to hygroscopic species in aerosol. During the smoggy period both the aerosol mass concentration and fine particle fraction of the size distribution are increased compared to the clear period. Sulfate, organic carbon, and elemental carbon in aerosol are the major species in determining the occurrence and severity of a smog in Seoul.

  • PDF

Effect of Load Condition on Turning Performance of a VLCC in Adverse Weather Conditions

  • Zaky, Mochammad;Yasukawa, Hironori
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.53-65
    • /
    • 2018
  • The load condition significantly influences ship maneuverability in calm water. In this research, the effect of the load condition on turning performance of a very large crude oil carrier (VLCC) sailing in adverse weather conditions is investigated by an MMG-based maneuvering simulation method. The relative drift direction of the ship in turning to the wave direction is $20^{\circ}-30^{\circ}$ in ballast load condition (NB) and full load condition (DF) with a rudder angle $35^{\circ}$ and almost constant for any wind (wave) directions. The drifting displacement in turning under NB becomes larger than that under DF at the same environmental condition. Advance $A_d$ and tactical diameter $D_t$ become significantly small with an increasing Beaufort scale in head wind and waves when approaching, although $A_d$ and $D_t$ are almost constant in following wind and waves. In beam wind and waves, the tendency depends on the plus and minus of the rudder angle.

해상풍력 구조물 설계를 위한 풍황 특성분석 (Analysis on wind condition characteristics for an offshore structure design)

  • 서현수;경남호;;김현구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.262-267
    • /
    • 2008
  • The long-term wind data are reconstructed from the short-term meteorological data to design the 4 MW offshore wind park which will be constructed at Woljeong-ri, Jeju island, Korea. Using two MCP (Measure-Correlate-Predict) models, the relative deviation of wind speed and direction from two neighboring reference weather stations can be regressed at each azimuth sector. The validation of the present method is checked about linear and matrix MCP models for the sets of measured data, and the characteristic wind turbulence is estimated from the ninety-percent percentile of standard deviation in the probability distribution. Using the Gumbel's model, the extreme wind speed of fifty-year return period is predicted by the reconstructed long-term data. The predicted results of this analysis concerning turbulence intensity and extreme wind speed are used for the calculation of fatigue life and extreme load in the design procedure of wind turbine structures at offshore wind farms.

  • PDF

초고압 송전용 애자의 풍소음 특성 (Aeolian Noise from High Voltage Insulators)

  • 추장희;김상범;신구용;이성두;이동일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1842-1847
    • /
    • 2000
  • In this paper, a review is attempted for understanding of aeolian noise from high voltage insulators and their aerodynamic noise characteristics were investigated using the low noise wind tunnel. The noise from the insulators was dependent upon the wind speed and their orientation relative to the wind direction. The noise spectrum revealed sharp peak which was found the cavity resonance frequency.

  • PDF

Seasonal effectiveness of a Korean traditional deciduous windbreak in reducing wind speed

  • Koh, Insu;Park, Chan-Ryul;Kang, Wanmo;Lee, Dowon
    • Journal of Ecology and Environment
    • /
    • 제37권2호
    • /
    • pp.91-97
    • /
    • 2014
  • Little is known about how the increased porosity of a deciduous windbreak, which results from loss of leaves, influences wind speed reduction. We hypothesized that, with loss of foliage, the wind speed reduction effectiveness of a deciduous windbreak decreases on near leeward side but not on further leeward side and that wind speed recovers faster in the full foliage season than in other seasons. During summer, autumn, and winter (full, medium, and non-foliage season, respectively), we observed wind speed and direction around a deciduous windbreak in a traditional Korean village on windward and near and further leeward sides (at -8H, 2H, and 6H; H = 20 m, a windbreak height). We used a linear mixed effects model to determine that the relative wind speed reduction at 2H significantly decreased from 83% to 48% ($F_{2,111.97}=73.6$, P < 0.0001) with the loss of foliage. However, the relative wind speed reduction at 6H significantly increased from 26% to 43% ($F_{2,98.54}=18.5$, P < 0.0001). Consequently, wind speed recovery rate between 2H and 6H in summer was two times higher than in autumn and ten times higher than in winter ($F_{2,102.93}=223.1$, P < 0.0001). These results indicate that deciduous windbreaks with full foliage seem to induce large turbulence and increase wind speed recovery rate on leeward side. Our study suggests that further research is needed to find the optimal foliage density of a deciduous windbreak for maximizing windbreak effectiveness regardless of seasonal foliage changes.