• Title/Summary/Keyword: Relative rotation

Search Result 242, Processing Time 0.023 seconds

Effects of Kinematics and Kinetics of the Lower Extremities Joint during Drop Landing in Adult Women with Patellofemoral Pain Syndrome (슬개대퇴동통증후가 성인 여성의 드롭랜딩 시 하지 주요관절의 운동역학적 변화에 미치는 영향)

  • Jeon, Kyoungkyu;Yeom, Seunghyeok
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.64-71
    • /
    • 2021
  • Objective: This study investigated the different in isokinetic peak strength of the knee joint, and kinetics and kinematics in drop landing pattern of lower limb between the patellofemoral pain syndrome (PFPS) patients and normal. Method: 30 adult females were divided into the PFPS (age: 23.13±2.77 yrs; height: 160.97±3.79 cm, weight: 51.19±4.86 kg) and normal group (age: 22.80±2.54 yrs, height: 164.40±5.77 cm, weight: 56.14±8.16 kg), with 15 subjects in each group. To examine the knee isokinetic peak strength, kinematics and kinetics in peak vertical ground reaction force during drop landing. Results: The knee peak torque (Nm) and relative strength (%) were significantly weaker PFPS group than normal group. In addition, PFPS group had significantly greater hip flexion angle (°) than normal group. Moreover, normal group had significantly greater moment of hip abduction, hip internal rotation, and left ankle eversion than PFPS group, and PFPS group had significantly greater moment of knee internal rotation. Finally, there was significant differences between the groups at anteroposterior center of pressure. Conclusion: The PFPS patients had weakened knee strength, and which can result in an unstable landing pattern and cause of more stress in the knee joints despite to effort of reduce vertical ground reaction force.

Human Activity Recognition with LSTM Using the Egocentric Coordinate System Key Points

  • Wesonga, Sheilla;Park, Jang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_1
    • /
    • pp.693-698
    • /
    • 2021
  • As technology advances, there is increasing need for research in different fields where this technology is applied. On of the most researched topic in computer vision is Human activity recognition (HAR), which has widely been implemented in various fields which include healthcare, video surveillance and education. We therefore present in this paper a human activity recognition system based on scale and rotation while employing the Kinect depth sensors to obtain the human skeleton joints. In contrast to previous approaches that use joint angles, in this paper we propose that each limb has an angle with the X, Y, Z axes which we employ as feature vectors. The use of the joint angles makes our system scale invariant. We further calculate the body relative direction in the egocentric coordinates in order to provide the rotation invariance. For the system parameters, we employ 8 limbs with their corresponding angles each having the X, Y, Z axes from the coordinate system as feature vectors. The extracted features are finally trained and tested with the Long short term memory (LSTM) Network which gives us an average accuracy of 98.3%.

Quasi-steady three-degrees-of-freedom aerodynamic model of inclined/yawed prisms: Formulation and instability for galloping and static divergence

  • Cristoforo Demartino;Zhen Sun;Giulia Matteoni;Christos T. Georgakis
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.57-78
    • /
    • 2023
  • In this study, a generalized three-degree-of-freedom (3-DoF) analytical model is formulated to predict linear aerodynamic instabilities of a prism under quasi-steady (QS) conditions. The prism is assumed to possess a generic cross-section exposed to turbulent wind flow. The 3-DoFs encompass two orthogonal horizontal directions and rotation about the prism body axis. Inertial coupling is considered to account for the non-coincidence of the mass center and the rotation center. The aerodynamic force coefficients-drag, lift, and moment-depend on the Reynolds number based on relative flow velocity, angle of attack, and the angle between the wind and the cable. Aerodynamic forces are linearized with respect to the static equilibrium configuration and mean wind velocity. Routh-Hurwitz and Liénard and Chipart criteria are used in the eigenvalue problem, yielding an analytical solution for instabilities in galloping and static divergence types. Additionally, the minimum structural damping and stiffness required to prevent these instabilities are numerically determined. The proposed 3-DoF instability model is subsequently applied to a conductor with ice accretion and a full-scale dry inclined cable. In comparison to existing models, the developed model demonstrates superior prediction accuracy for unstable regions compared with results in wind tunnel tests.

Theoretical rotational stiffness of the flexible base connection based on parametric study via the whale optimization algorithm

  • Mahmoud T. Nawar;Ehab B. Matar;Hassan M. Maaly;Ahmed G. Alaaser;Osman Hamdy
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.43-52
    • /
    • 2023
  • This paper handles the results of an extensive parametric study on the rotational stiffness of the flexible base connection using ABAQUS program. The results of the parametric study show the relation between the applied moment and the relative rotation for 96 different base connections. The configurations of the studied connections considered different numbers, diameters, and spacing of the anchor bolts along with different thicknesses of the base plate to investigate the effect of these parameters on the rotational stiffness behavior. The results of the previous parametric research used through the whale optimization algorithm (WOA) to detect different equation formulation of the moment-rotation (M-Ɵr) equation to detect optimum equation simulates the general nonlinear rotational behavior of the flexible base connection considering all variables used in the parametric study. WOA is a relatively new promising algorithm, which is used in different types of optimization problems. For more verification, the classical genetic algorithm (GA) is used to make a comparison with WOA results. The results show that WOA is capable of getting an optimum equation of the M-Ɵr relation, which can be used to simulate the actual rotational stiffness of the flexible base connections. The rotational stiffness at H/150 can be calculated using WOA (1) method and be used as a design aid for engineering design.

The Effects of the Position of Ipsilateral Neck Rotation on the Inhibition of the Upper Trapezius Muscle During Lower Trapezius Exercises

  • Park, Se-in;Chae, Ji-yeong;Kim, Hyeong-hwi;Cho, Yu-geoung;Park, Kyue-nam
    • Physical Therapy Korea
    • /
    • v.23 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • Background: The unilateral prone arm lift (UPAL) is commonly used to exercise the lower trapezius muscle. However, overactivation of the upper trapezius can induce pain during UPAL exercises in subjects with upper trapezius tenderness. Objects: The purpose of this study was to investigate the effects of position of ipsilateral neck rotation (INR) on the inhibition of upper trapezius muscle activity and the facilitation of the lower trapezius muscle when performing UPAL exercises. Methods: In total, 19 subjects with upper trapezius tenderness were recruited for the study. Electromyographic (EMG) activity was measured in the upper, middle, and lower trapezius muscles during UPAL with and without INR position. Wilcoxon signed-rank test was used to compare EMG activity in the trapezius muscles and the muscle ratios. Results: EMG activity in the upper trapezius muscles was decreased significantly in the INR condition compared to without the position with INR during UPAL exercises (p<.05). EMG activity in the middle and lower trapezius was not significantly different between the with and without INR conditions (p>.05). However, the ratio of lower to upper trapezius activation showed a significant increase in the INR condition compared to the without INR condition (p<.05), indicating greater lower trapezius activation relative to the upper trapezius in the INR position than in the without INR position. Conclusions: The EMG results obtained in this study suggest that the position with INR reduced overactivation in the upper trapezius and improved muscle imbalance during lower trapezius exercises in individuals with upper trapezius tenderness.

Development of Stem-cutting Transplanter for Short-term Rotation Coppice (단기순환림 생산을 위한 삽목 이식기 개발)

  • Kim, Dong-Hwa;Kim, Dae-Cheol;Kim, Sang-Hun;Shin, Beom-Soo
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.37-45
    • /
    • 2010
  • Since SRC (Short-term Rotation Coppice) such as poplar and willow can be harvested in three years, they are known to be a potential forest biomass as fuel for a power plant. The production system including transplanting and harvesting is, however, necessary to be mechanized because such a biomass should be handled in a massive volumetric size. A pull-type stem-cutting transplanter was developed in the research as the first step to realize the production of SRC. A needle-like transplanting device pushes a stem-cutting into the prepared soil bed by a pneumatic cylinder, and another device firms soil around a stem-cutting transplanted. Since this is an intermittent operation, it was necessary to develop a zero horizontal velocity mechanism which enabled only the transplanting needle part to continue a zero horizontal movement relative to the ground during the transplanting operation even when the tractor kept moving forward. The 2-row transplanter can transplant stem-cuttings at the rate of 6.5 seconds per row without missing a single attempt. The planting depth and distance were well maintained and controlled. Their CVs were between 2.1~3.4% and 0.87~1.7% for the depth and the distance, respectively. Although, the transplanted stem-cuttings tended to lean outward from the back-view and forward from the side view, they were planted within the range of $3^{\circ}$ from the upright position.

A Study on the Weight Adjustment Method for Household Panel Survey (가구 패널조사에서의 가중치 조정에 관한 연구)

  • NamKung, Pyong;Byun, Jong-Seok;Lim, Chan-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1315-1329
    • /
    • 2009
  • The panel survey is need to have a more concern about a response due to a secession and non-response of a sample. And generally a population is not fixed and continuously changed. Thus, the rotation sample design can be used by the method replacing the panel research. This paper is the study of comparison to equal weight method, Duncan weight, Design weight method, weight share method in rotation sample design. More specifically, this paper compared variance estimators about the existing each method for the efficiency comparison, and to compare the precision using the relative efficiency gain by the Coefficient Variance(CV) after getting the design weight from the actual data.

Effect of Horizontal Adduction Force on Infraspinatus and Deltoid Activities During the Side-Lying Wiper Exercise Using Pressure Biofeedback

  • Kim, Hyun-a;Hwang, Ui-jae;Jung, Sung-hoon;Ahn, Sun-hee;Kim, Jun-hee;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.24 no.4
    • /
    • pp.77-83
    • /
    • 2017
  • Background: Shoulder external rotation exercises are commonly used to improve the stabilizing ability of the infraspinatus. Although the side-lying wiper exercise (SWE) is the most effective shoulder external rotation exercise to maximize infraspinatus activity, the effect of adduction force on the infraspinatus and posterior deltoid has not been demonstrated. Objects: This study was conducted to investigate whether horizontal adduction force increases infraspinatus activity and decreases posterior deltoid activity. Methods: Twenty-eight healthy subjects (male: 21, female: 7; $age=23.5{\pm}1.8years$; $height=170.1{\pm}7.4cm$; $weight=69.4{\pm}9.6kg$) were recruited. Subjects were asked to perform the SWE under two conditions: (1) general SWE and (2) SWE with adduction force using pressure biofeedback. Surface electromyography (EMG) signals of the infraspinatus and posterior deltoid were recorded during SWE. Paired t-tests were used to compare the EMG activity of the infraspinatus and posterior deltoid between the two conditions. Results: Posterior deltoid muscle activity was significantly decreased following SWE with adduction force ($7.53{\pm}4.52%$) relative to general SWE ($11.68{\pm}8.42%$) (p<.05). However, there was no significant difference in the infraspinatus muscle activity between the SWE with adduction force ($28.33{\pm}12.16%$) and the general SWE ($26.54{\pm}13.69%$) (p>.05). Conclusion: Horizontal adduction force while performing SWE is effective at decreasing posterior deltoid activity.

A Case of Gastric Volvulus in a 3-year-old Female (3세 소아에서 발생한 Gastric Volvulus 1례)

  • Lee, Jin-Tae;Kim, Hwa-Jung;Kim, Hee-Sup;Tchah, Hann;Park, Ho-Jin;Kim, Han-Sun
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.3 no.1
    • /
    • pp.89-92
    • /
    • 2000
  • Acute gastric volvulus is uncommon but surgically emergent. Normally, the stomach is held in position by four ligaments: gastrophrenic, gastrohepatic, gastrosplenic, and gastrocolic. In addition, relative fixation of the pylorus and esophagus provides further anchorage. A normal diaphragm also helps to prevent abnormal displacement of abdominal viscera and development of gastric volvulus. Volvulus may be organoaxial, mesenteroaxial, or a combination of both. Organoaxial volvulus is the rotation of the stomach around an axis extending from the hiatus of the diaphragm to the pylorus. Mesenteroaxial volvulus is the rotation of the stomach around an axis transecting the lesser and greater curvatures of the stomach. The symptoms of gastric volvulus depend on its type, the extent and degree of rotation and obstruction, and associated defects. Classic clinical features of acute gastric volvulus, as by Borchardt in 1904, include unproductive retching, acute, localized epigastric distention, and the inability to pass a NG tube. The presence and severity of these features depend on the degree of gastric obstruction of both the gastroesophageal junction and pyloric outlet. It may be suspected on plain abdominal radiographs and usually confirmed by upper gastrointestinal series. Acute volvulus requires immediate surgical repair, fixation to avoid recurrence, and correction of any underlying anatomic abnormality. Any associate defect should be repaired and the stomach must be fixed. The authors report a case of an 3-year-old girl who had a mesenterioaxial gastric volvulus.

  • PDF

Analysis of Axial Capacity and Constructability of Helical Pile with Inner Cone Penetration (내부 콘 항타를 적용한 헬리컬 파일의 지지력 및 시공성 분석)

  • Lee, Jun-Ho;Lee, Kicheol;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • In this study, 1/6 small-scale model tests of helical piles were conducted to evaluate their installation time and ultimate capacities. Model sand layers were constructed using sand pluviating method to produce uniform soil relative density. For installation of different helical piles varying locations (vertical center-to-center spacings of 50 mm and 150 mm) of helix plates, two different rotation speeds of 15 rpm and 30 rpm were implemented. Cone penetration equipment was installed within the hallow section of the helical pile to increase ultimate capacity of helical pile and to evaluate soil properties of plugged soils and soils below pile tip after installation of the piles. Based on the test results, the most fasted installation was possible under the condition of "rotation speed of 30 rpm and center-to-center spacing of 50 mm", and the highest ultimate capacity was mobilized under the condition of "rotation speed of 30 rpm and center-to-center spacing of 150 mm with cone penetration implementation."