• Title/Summary/Keyword: Relative reactivity

Search Result 85, Processing Time 0.034 seconds

The comparison of angular dependence for optical stimulated luminescence dosimeter(OSLD) and electronic personal dosimeter(EPD) used in Diagnostic Radiology (영상의학과에서 사용되는 광자극 형광선량계와 전자식 개인선량계의 방향 의존성 비교)

  • Kwon, Soon-mu;Park, Jeong-kyu;Kim, Boo-soon
    • Journal of Digital Contents Society
    • /
    • v.16 no.3
    • /
    • pp.463-470
    • /
    • 2015
  • The angular dependence of active dosimeters, EPD, is analysed and compared with that of passive dosimeters, OSLD, after evaluating their relative response and uncertainty of measurement, where it is known that the personal use of them has been increased recently. There appeared a minor variation for average relative response of OSLD in the horizontal and vertical directions within the range $0^{\circ}{\sim}{\pm}90^{\circ}$, which are 0.97 and 0.95 respectively. The variations of angular dependence in the same situations with OSLD are 0.65 and 0.62, respectively, which also reveals a negligible effect on the overall uncertainty. EPDs within the interval $0^{\circ}{\sim}{\pm}60^{\circ}$ for horizontal and vertical directions are 0.94 and 0.97, respectively. These satisfy the requirements of IEC 61526. Uncertainties about the dependence of direction from horizontal and vertical directions are 0.44, 0.40, respectively. The impact of these uncertainties on the overall uncertainty was negligible. However, we observed a significant change in reactivity: the relative reactivities for $+90^{\circ}$ and $-90^{\circ}$ from the horizontal direction are 0.60, 0.37, while that form vertical direction is 0.06. The direction dependence of OSLD was superior to EPD in the range of $0^{\circ}{\sim}{\pm}90^{\circ}$. There appeared a rapidly changing structural features in EPD response for a certain direction. Therefore, we conclude that concurrent use of passive dosimeters and auxiliary dosimeter provides accurate data for personal dose measurements.

Breakthrough Curves and Miscible Displacement of Cadmium Through Double-Layered Reclaimed Soils Amended with Macroporous Granule

  • Kim, Hye-Jin;Ryu, Jin-Hee;Kim, Si-Ju;Park, Mi-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • Transport of heavy metals such as Cd is affected by several rate-limiting processes including adsorption and desorption by exchange reactions in soils. In this study, column transport and batch kinetic experiments were performed to assess Cd mobility in a double-layered soil with a reclaimed saline and sodic soil (SSS) as top soil and macroporous granule (MPG) as a bottom layer. For individual soil layer having different physical and chemical properties, Cd was considered to be nonlinear reactivity with the soil matrix in layered soils. The dispersive equation for reactive solutes was solved with three types of boundary conditions for the interface between soil layers. The adsorption of Cd with respect to the saline-sodic sandy loam and the MPG indicated that the nature of the sites or the mechanisms involved in the sorption process of Cd was different and the amounts of Cd for both of samples increases with increasing amounts of equilibrium concentration whereas the amount of Cd adsorbed in saline-sodic sandy loam soil was higher than that in MPG. The results of breakthrough curve indicating relative Cd retardation accompanied by layer material and sequence during leaching showed that the number of pore volumes to reach the maximum relative concentration of 1 increased in the order of MPG, SSS, and double layer of SSS-MPG. Breakthrough curves (BTCs) from column experiments were well predicted with our double-layered model where independently derived solute physical and retention parameters were implemented.

Determination of Reactivity by MO Theory (XXXIV). MINDO/3 Theoretical Studies on Sigmatropic Hydrogen Rearrangements (1) : Systems with Central Carbon Atom (분자궤도론에 의한 반응성 결정 (제34보). 수소 시그마 결합 자리옮김 반응에 대한 MINDO/3 이론연구 (1) : 중앙탄소원자를 가진 계)

  • Cho, Jeoung-Ki;Lee, Ik-Choon;Oh, Hyuck-Keun;Cho, In-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.217-230
    • /
    • 1984
  • The MINDO/3 method was used in determination of transition states and activation barriers for various 1,2-, 1,3- and 1,5-sigmatropic hydrogen rearrangements involving systems with central carbon atom. It was found that, besides the consideration of orbital symmetry, steric effect, aromaticity, and orbital interactions were found to dictate the stability of the transition state. For systems with hetero atoms, lone pair orbitals tend to ease orbital distortion required at the transition state by participating in hydrogen transfer process and were found to lower the activation barrier accordingly. Comparison of the relative barrier heights with those obtained by using more sophisticated ab initio MO calculations showed that the MINDO/3 results give qualitatively the same tendency of the relative order of the activation barriers.

  • PDF

Effect of SiC Particles Size on the Densification of $Al_2O_3-SiC$ Composite During Pressureless Sintering ($Al_2O_3-SiC$ 복합재료의 상압소결시 치밀화에 미치는 SiC 원료분말의 크기영향)

  • 채기웅
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.11
    • /
    • pp.1261-1265
    • /
    • 1999
  • Effect of SiC particle size of the densification of Al2O3-SiC composite during pressureless sintering was investigated. Two types of SiC powders having average particle size of 0.15${\mu}{\textrm}{m}$ and 3${\mu}{\textrm}{m}$ were used. Densification rate of the specimen containing 0.15${\mu}{\textrm}{m}$ SiC particles was slower than that of the specimen containg 3${\mu}{\textrm}{m}$ SiC particles. Although the relative density of the specimen containing 0.15${\mu}{\textrm}{m}$ SiC particles was below 90% of theoretical density after sintering at 155$0^{\circ}C$ the complete closure of open pores occurred. Therefore full densification could be obtained by subsequent HIP. On the other hand in the specimen containing 3${\mu}{\textrm}{m}$ SiC particles the complete closed pore was observed at 95% of theoretical density. Such a fast pore closure in the specimen containing 0.15${\mu}{\textrm}{m}$ SiC particles is likely to occur as a result of dense reaction layer formation on the specimen surface which is attributed to the high reactivity of small size particles with sintering atmosphere.

  • PDF

Determination of Reactivities by Molecular Orbital Theory (VII). SCF-IMO Studies on the Diels-Alder Reactions between Cyclopentadiene and 2-Substituted Acrylonitriles (화학반응성의 분자궤도론적 연구 (제7보). 시클로펜타디엔과 아크릴로니트릴 치환체간의 Diels-Alder 반응에 대한 SCF-IMO 연구)

  • Lee Ikchoon;Choi Eun Wha
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.218-224
    • /
    • 1975
  • The ground state SCF IMO theory was applied to the Diels-Alder reactions of cyclopentadiene with 2-substituted acrylonitriles. The CNDO/2 MO of the separate systems, including both $\sigma$ and $\pi$ electrons, was used as starting point. The qualitative prediction of the relative reactivity was made with the calculated primary interaction energies. Here the calculated activation energies appeared to be realistic. The stereoselectivity determined by the calculated secondary interaction energies represented the endo-selectivity for all the substituents. The reason for the slightly unsymmetrical ring closure at the transition state was discussed in terms of valence inactive electron densities of the reacting atoms.

  • PDF

Impact of molybdenum cross sections on FHR analysis

  • Ramey, Kyle M.;Margulis, Marat;Read, Nathaniel;Shwageraus, Eugene;Petrovic, Bojan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.817-825
    • /
    • 2022
  • A recent benchmarking effort, under the auspices of the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA), has been made to evaluate the current state of modeling and simulation tools available to model fluoride salt-cooled high temperature reactors (FHRs). The FHR benchmarking effort considered in this work consists of several cases evaluating the neutronic parameters of a 2D prismatic FHR fuel assembly model using the participants' choice of simulation tools. Benchmark participants blindly submitted results for comparison with overall good agreement, except for some which significantly differed on cases utilizing a molybdenum-bearing control rod. Participants utilizing more recently updated explicit isotopic cross sections had consistent results, whereas those using elemental molybdenum cross sections observed reactivity differences on the order of thousands of pcm relative to their peers. Through a series of supporting tests, the authors attribute the differences as being nuclear data driven from using older legacy elemental molybdenum cross sections. Quantitative analysis is conducted on the control rod to identify spectral, reaction rate, and cross section phenomena responsible for the observed differences. Results confirm the observed differences are attributable to the use of elemental cross sections which overestimate the reaction rates in strong resonance channels.

High-fidelity numerical investigation on structural integrity of SFR fuel cladding during design basis events

  • Seo-Yoon Choi;Hyung-Kyu Kim;Min-Seop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.359-374
    • /
    • 2024
  • A high-fidelity numerical analysis methodology was proposed for evaluating the fuel rod cladding integrity of a Prototype Gen IV Sodium Fast Reactor (PGSFR) during normal operation and Design basis events (DBEs). The MARS-LMR code, system transient safety analysis code, was applied to analyze the DBEs. The results of the MARS-LMR code were used as boundary condition for a 3D computational fluid dynamics (CFD) analysis. The peak temperatures considering HCFs satisfied the cladding temperature limit. The temperature and pressure distributions were calculated by ANSYS CFX code, and applied to structural analysis. Structural analysis was performed using ANSYS Mechanical code. The seismic reactivity insertion SSE accident among DBEs had the highest peak cladding temperature and the maximum stress, as the value of 87 MPa. The fuel cladding had over 40 % safety margin, and the strain was below the strain limit. Deformation behavior was elucidated for providing relative coordinate data on each active fuel rod center. Bending deformation resulted in a flower shape, and bowing bundle did not interact with the duct of fuel assemblies. Fuel rod maximum expansion was generated with highest stress. Therefore, it was concluded that the fuel rod cladding of the PGSFR has sufficient structural safety margin during DBEs.

Coupled neutronics/thermal-hydraulic analysis of ANTS-100e using MCS/RAST-F two-step code system

  • Tung Dong Cao Nguyen;Tuan Quoc Tran;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4048-4056
    • /
    • 2023
  • The feasibility of using the Monte Carlo code MCS to generate multigroup cross sections for nodal diffusion simulations RAST-F of liquid metal fast reactors is investigated in this paper. The performance of the MCS/RAST-F code system is assessed using steady-state simulations of the ANTS-100e core. The results show good agreement between MCS/RAST-F and MCS reference solutions, with a keff difference of less than 77 pcm and root-mean-square differences in radial and axial power of less than 0.5% and 0.25%, respectively. Furthermore, the MCS/RAST-F reactivity feedback coefficients are within three standard deviations of the MCS coefficients. To validate the internal thermal-hydraulic (TH) feedback capability in RAST-F code, the coupled neutronic/TH1D simulation of ANTS-100e is performed using the case matrix obtained from MCS branch calculations. The results are compared to those obtained using the MARS-LBE system code and show good agreement with relative temperature differences in fuel and coolant of less than 0.8%. This study demonstrates that the MCS/RAST-F code system can produce accurate results for core steady-state neutronic calculations and for coupled neutronic/TH simulations.

Mono-layer Compositional Analysis of Surface of Mineral Grains by Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS) (TOF-SIMS를 이용한 광물 표면의 단층조직 분석 연구)

  • Kong Bong Sung;Chryssoulis Stephen;Kim Joo Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • Although the bulk composition of materials is one of the major considerations in extractive metallurgy and environmental science, surface composition and topography control surface reactivity, and consequently play a major role in determining metallurgical phenomena and pollution by heavy metals and organics. An understanding of interaction mechanisms of different chemical species at the mineral surface in an aqueous media is very important in natural environment and metallurgical processing. X-ray photoelectron spectroscopy (XPS) has been used as an ex-situ analytical technique, but the material to be analyzed can be any size from $100\;{\mu}m$ up to about 1 cm. It can also measure mixed solids powders, but it is impossible to ascertain the original source of resulting x-ray signals where they were emitted from, since it radiates and scans the macro sample surface area. The study demonstrated the ability of TOF-SIMS to detect individual organic species on the surfaces of mineral particles from plant samples and showed that the TOF-SIMS techniques provides an excellent tool for establishing the surface compositions of mineral grains and relative concentrations of chemicals on mineral species.

Theoretical Studies on the Alkylidene Silylenoid H2C = SiLiF and Its Insertion Reaction with R-H (R = F, OH, NH2)

  • Tan, Xiaojun;Wang, Weihua;Li, Ping;Li, Qingyan;Cheng, Lei;Wang, Shufen;Cai, Weiwang;Xing, Jinping
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1349-1354
    • /
    • 2010
  • The geometries and isomerization of the alkylidene silylenoid $H_2C$ = SiLiF as well as its insertion reactions with R-H (R = F, OH, $NH_2$) have been systematically investigated at the B3LYP/6-311+$G^*$ level of theory. The potential barriers of the three insertion reactions are 97.5, 103.3, and 126.1 kJ/mol, respectively. Here, all the mechanisms of the three reactions are identical to each other, i.e., an intermediate has been formed first during the insertion reaction. Then, the intermediate could dissociate into the substituted silylene ($H_2C$ = SiHR) and LiF with a barrier corresponding to their respective dissociation energies. Correspondingly, the reaction energies for the three reactions are -36.4, -24.3, and 3.7 kJ/mol, respectively. Compared with the insertion reaction of $H_2C$ = Si: and R-H (R = F, OH and $NH_2$), the introduction of LiF makes the insertion reaction occur more easily. Furthermore, the effects of halogen (F, Cl, Br) substitution and inorganic salts employed on the reaction activity have also been discussed. As a result, the relative reactivity among the three insertion reactions should be as follows: H-F > H-OH > H-$NH_2$.