• Title/Summary/Keyword: Relative elevation

Search Result 185, Processing Time 0.023 seconds

Studies on the Physical Fitness of the Middle and High School Boys (성장기 한국인 남녀 기초체력 향상에 관한 연구 (남자 중.고등학생을 대상으로 하여))

  • Chae, E-Up;Kim, Kyu-Soo;Choo, Young-Eun;Kim, Chong-Suck;Woo, Won-Hyung;Chung, Pock-Tuck
    • The Korean Journal of Physiology
    • /
    • v.4 no.2
    • /
    • pp.5-17
    • /
    • 1970
  • The effects of Physical exercise, gymnastics and sports on the cardiopulmonary function were studied in the middle and high school toys. The subjects were divided into 4 groups; non-training group and training group in both middle school and high school boys. In the above groups, pulmonary function studies were performed, and blood pressure and the heart rate were also checked to evaluate physical fitness during and immediately after running exercise on the tread-mill, with the speed of 5 MPH and elevation of 9% and 11.25%. The types of sports in the training group were base ball, body building, Taekwondo (Korean style boxing) and hand ball. The results obtained were as followings: 1) In the training group, cardiopulmonary function showed some tendency of the increase comparing to the non-training group. 2) The increase in cardiopulmonary function was observed according to the age became older, but the clear changes on cardiopulmonary function was not observed as the difference of the group between the training and the non-training. 3) The expiratory volume was decreased as the increase of age except 17 years of age for the value of the per kg body weight. 4) In the non-training group, the mean value of oxygen consumption under maximum work load was increased, while those in the training group was decreased. But it may be noted that oxygen consumption for the expiratory volume was increased in the training group, and that the oxygen cost in the training group was .higher than that of the non-training group. 5) The pulse pressure of the high school group during and immediately after running exercise was observed in the higher value comparing with that of the middle school group It was suggested that the changes of the pulse pressure was owing to the method of determination and that to the decrease of diastolic pressure caused by the decrease of peripheral vascular resistance up to critical closing pressure. 6) Any differences of the changes in the heart rate between the training group and non-training group was not observed during and immediately after running exercise. 7) The relative value of the expiratory volume to the heart rate was decreased in the elder age group.

  • PDF

Gene Structure and Altered mRNA Expression of Metallothionein in Response to Metal Exposure and Thermal Stress in Miho Spine Loach Cobitis choii (Cobitidae; Cypriniformes) (미호종개 metallothionein 유전자의 구조 및 중금속 노출과 고온 자극에 대한 MT mRNA의 발현 특징 분석)

  • Lee, Sang-Yoon;Nam, Yoon-Kwon
    • Korean Journal of Ichthyology
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Gene and promoter structures of metallothionein(MT) from Miho spine loach (Cobitis choii; Cypriniformes) were characterized, and the transcriptional responses to experimental exposures to heavy metals and heat stress were examined. The C. choii metallothionein displayed well-conserved features of teleostean metallothioneins at gDNA, mRNA and amino acid levels. Bioinformatic analysis predicted that the C. choii MT regulatory region potentially possessed various motifs or elements targeted by various transcription factors associated with metal-coordinating regulation (e.g., metal transcription factor-1), immune responses (e.g., nuclear factor kappa B), and thermal modulations (e.g., heat shock factor). Acute heavy-metal exposures to 0.5 or $1.0\;{\mu}M$ of cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni) or zinc (Zn) showed that MT transcription was significantly stimulated by Cd (9.6-fold relative to non-exposed control) and Cu (10.4-fold), only moderately by Mn (2.4-fold), but hardly by Ni and Zn. Elevation of water temperature from $25^{\circ}C$ to $31^{\circ}C$ caused a rapid modulation of MT mRNAs toward upregulation to 9.5-fold; however, afterward the elevated mRNA level slightly decreased during further incubation at $31^{\circ}C$ for 6 h. Results from this study suggest that MT-based expression assay could be a useful basis for better understanding the metal- and/or heat-caused stresses in this endangered fish species.

Stand Conditions Influencing the Infection of the Korean Pine Blister Rust Caused by Cronartium ribicola (잣나무털녹병 발생에 영향하는 임지환경요인)

  • Kim Hyun Joong;Yi Chang Keun;Sung Jae Mo
    • Korean Journal Plant Pathology
    • /
    • v.3 no.4
    • /
    • pp.277-284
    • /
    • 1987
  • Infection rate of the blister rust was investigated with special reference to the effect of eight stand factors at 221 plots selected from 131 Korean pine(Pinus koraiensis S. et Z,) stands, and the data were analyzed by multivariated statistical analysis. Environmental factors such as the density of Pedicularis spp., alternate hosts of the Korean pine blister rust, altitude, stand age, aspect, and pruning treatment, from the highest to the lowest were found to be related to the occurrence of the rust disease, Density of Pedicularis spp, was the most closely related to the' infection rate than any other factors, Especially, Pedicularis spp. growing naturally inside the pine stand had an important effect on the infection rate, but those on the outside more than 100m away had little effects, The higher the elevation, the heavier the infection rate. Infection was the heaviest at the altitudes of above 1,000m with high relative humidity and cool temperature. Infection rate was severe in young stands below 10 years old and had a reducing tendency as they mature. Stands above 16 years old were more resistant. The infection rate by the aspect of stand was higher at E- NE and W -SW exposures than at S-SE and N -NW. The infection rate at non-pruning stands was higher than at pruning stands with the lowest branch being at least 60cm high from the ground.

  • PDF

Seasonal Accumulation Pattern and Preservation Potential of Tidal-flat Sediments: Gomso Bay, West Coast of Korea (조간대 퇴적물의 계절적 집적양상과 보존: 한국 서해안의 곰소만)

  • Chang, Jin-Ho;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.149-157
    • /
    • 1998
  • Seasonal changes of topography, sediment grain size and accumulation rate in the Gomso-Bay tidal flat, west coast of Korea, have been studied in order to understand the seasonal accumulation pattern and preservation potential of the tidal-flat sediments. Seasonal levelings across the tidal flat show that the landward movement of both intertidal sand shoals and cheniers accelerates during the winter and typhoon periods, but it almost stops in summer when mud deposition is instead predominant at the middle and upper tidal flats. Seasonal variations of mean grain size were largest on the upper part of middle tidal flat where summer mud layers were eroded during the winter and typhoon periods. Measurements of accumulation depths from sea floor to basal plate reveal that accumulation rates were seasonally controlled according to the elevation of tidal-flat surface. The upper tidal flat where the accumulation rate of summer was generally higher than that of winter was characterized by a continuous deposition throughout the entire year, whereas in the middle tidal flat, sediment accumulations were concentrated in winter relative to summer and were intermittently eroded by typhoons. The lower tidal flat were deposited mostly in winter and eroded during summer typhoons. Can cores taken across the tidal flat reveal that sand-mud interlayers resulting from such seasonal changes of energy regime are preserved only in the upper part of the deposits and generally replaced by storm layers downcore. Based on above results, it is suggested that the storm deposits by winter storms and typhoons would consist of the major part of the Gomso-Bay sediments.

  • PDF

Historical Transformation of Types of Hand-Drawing and Their Hybridization in Landscape Architectural Design (조경 설계에서 손 드로잉 유형의 역사적 변천과 혼성화)

  • Lee, Myeong-Jun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.5
    • /
    • pp.71-86
    • /
    • 2017
  • This work explores the historical transformation of manual landscape architectural drawings in terms of hybridization to uncover their inherent creative aspect. Landscape architectural drawing has duel functions; namely, scientific instrumentality and artistic imagination, which are relative, interchangeable, and transformable. These characteristics have been embodied in the forms of particular types of drawing, projections, perspective views, and diagrams, which are not so much clearly distinguishable as rather mutually complementary and hybridized. In particular, the pictorial views of plants in the forms of a perspective view or elevation were frequently hybridized to projection drawings of grounds and architectural structures, which is called planometrics. Particular drawing types have often emerged as suitable and thereby dominant forms, depending on the particular historical styles of landscape design. Sixteenth-century Italian Renaissance gardens and seventeenth-century French formal gardens were generally visualized in the form of projections. Eighteenth-century and early nineteenth-century English landscape gardens were frequently represented in a pictorial perspective view. In nineteenth-century America, different drawing techniques such as competition drawing, photography, and map overlay were specialized depending on their respective functions. Twentieth-century American modernists began to explore the diagram to deploy design strategies. In such transformation, however, the planometric, which considers both the ground plane and plant's frontal identities simultaneously and thereby is suitable to landscape design, was frequently used as a hybridization technique. In the mid-nineteenth century, a top view of plants replaced the planometric, and then, in the twentieth century, plants were no longer represented artistically, instead reduced to the forms of standardized flat symbols. The use of instrumental visualizations thereby gradually increased rather than the use of an imaginative representation for landscape architectural drawings.

A Study on the Solutions of Guided Missile Attacks using 3-D RCS Data of Maritime Ship (함정의 3차원 RCS 측정 데이터를 활용한 유도탄 대응 기법 연구)

  • Gwak, Sang-Yell
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.552-557
    • /
    • 2020
  • The Radar Cross Section (RCS) is a virtual region indicating the strength of a wavelength at which a radar signal is reflected and received. As the ship's RCS represents its own stealth performance and survivability, efforts have been made in various areas from design to construction to reduce the RCS. The RCS can be predicted using design drawings and CAD models, but it is necessary to measure the RCS at sea since sea clutter and multipath reflections occur in the sea environment. However, such RCS predictions and measured values provide only a simple relative magnitude to the user, and there has not been much research on this topic. In this paper, a missile countermeasure technique was studied using 3D RCS measurement data in an operating environment. The elevation and azimuth angle of the ship viewed from the missile were estimated using the location information of the missile, and the RCS value was inverted by mapping it to previously measured 3D RCS measurement data. In addition, by using the movement information of the missile, the RCS observed by the missile could be predicted in advance, and this method can be used to propose a response plan based on the maneuvering and chaff system.

Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas (서울지역의 고해상도 WISE-WRF 모델의 지표면 거칠기 길이 개선에 따른 민감도 분석)

  • Jee, Joon-Bum;Jang, Min;Yi, Chaeyeon;Zo, Il-Sung;Kim, Bu-Yo;Park, Moon-Soo;Choi, Young-Jean
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.111-126
    • /
    • 2016
  • In the numerical weather model, surface properties can be defined by various parameters such as terrain height, landuse, surface albedo, soil moisture, surface emissivity, roughness length and so on. And these parameters need to be improved in the Seoul metropolitan area that established high-rise and complex buildings by urbanization at a recent time. The surface roughness length map is developed from digital elevation model (DEM) and it is implemented to the high-resolution numerical weather (WISE-WRF) model. Simulated results from WISE-WRF model are analyzed the relationship between meteorological variables to changes in the surface roughness length. Friction speed and wind speed are improved with various surface roughness in urban, these variables affected to temperature and relative humidity and hence the surface roughness length will affect to the precipitation and Planetary Boundary Layer (PBL) height. When surface variables by the WISE-WRF model are validated with Automatic Weather System (AWS) observations, NEW experiment is able to simulate more accurate than ORG experiment in temperature and wind speed. Especially, wind speed is overestimated over $2.5m\;s^{-1}$ on some AWS stations in Seoul and surrounding area but it improved with positive correlation and Root Mean Square Error (RMSE) below $2.5m\;s^{-1}$ in whole area. There are close relationship between surface roughness length and wind speed, and the change of surface variables lead to the change of location and duration of precipitation. As a result, the accuracy of WISE-WRF model is improved with the new surface roughness length retrieved from DEM, and its surface roughness length is important role in the high-resolution WISE-WRF model. By the way, the result in this study need various validation from retrieved the surface roughness length to numerical weather model simulations with observation data.

DEVELOPMENT OF THREE-DIMENSIONAL DYNAMIC ANALYSIS MODEL HIGH SPEED TRAIN-BRIDGE INTERACTION (철도 차량 - 교량 상호작용에 의한 3차원 동적 해석 모델 개발)

  • Dinh, Van Nguyen;Kim, Ki Du;Shim, Jae Soo;Choi, Eun Soo;Songsak, Suthasupradit
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.151-163
    • /
    • 2008
  • A formulation of three-dimensional model of articulated train-b ridge dynamic interaction has been made for the Korean eXpress Train (KTX). Semi-periodic profiles of rail irregularities consisting of elevation, alignment, cross and gauge irregularities have also been proposed using FRA maximum tolerable rail deviations. The effects of rail joints and sleeper step were also included. The resulting system matrices of train and bridge are very spare, and thus, are stored in one-dimensional arrays, yielding a time-efficient solution. A numerical algorithm for computing bridge-train response including an iterative scheme is also formulated. A program simulating train-bridge interaction and solving this problem using the new algorithm is implemented as new modules for the f inite element analysis software named XFINAS. Computed results using the new program are then checked by that of the validated 2-D bridge-train interaction model. This new 3D analysis provides more detailed train responses such as swaying, bouncing, rolling, pitching and yawing accelerations, which are useful inevaluating passenger riding comfort. Train operation safety and derailment could also be directly investigated by relative wheel displacements computed from this program.

A Study on the Recharge Characteristics of Groundwater in the Jeju Samdasoo Watershed Using Stable Water Isotope Data (안정동위원소를 이용한 제주삼다수 유역의 지하수 함양 특성 연구)

  • Shin, Youngsung;Kim, Taehyeong;Moon, Suhyung;Yun, Seong-Taek;Moon, Dukchul;Han, Heejoo;Kang, Kyounggu
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.25-36
    • /
    • 2021
  • This study evaluated monthly, seasonal and altitudinal changes of oxygen and hydrogen isotope compositions of wet precipitation samples (n = 238) that were collected for last four years from 7 altitudes (from 265 to 1,500 m above sea level) in the Jeju Samdasoo watershed at the southeastern part of Jeju island, in order to examine the recharge characteristics of groundwater that is pumped out for the production of the Samdasoo drinking mineral water. Precipitation samples showed a clear seasonal change of O-H isotopic composition as follow, due to the different air masses and relative humidity: 𝛿D = 7.3𝛿18O + 11.3 (R2 = 0.76) in the wet season (June to September), while 𝛿D = 7.9𝛿18O + 9.5 (R2 = 0.91) in the dry season (October to May). In contrast, the stable isotope compositions of groundwater were nearly constant throughout the year and did not show a distinct monthly or seasonal change, implying the well-mixing of infiltrated water during and after its recharge. An altitudinal effect of the oxygen isotope compositions of precipitation was also remarkable with the decrease of -0.19‰ (R2 = 0.91) with the elevation increase by 100 m. Based on the observed altitudinal change, the minimum altitude of groundwater recharge was estimated as 1,200 m above the sea level in the Jeju Samdasoo watershed.

Assessment of Topographic Normalization in Jeju Island with Landsat 7 ETM+ and ASTER GDEM Data (Landsat 7 ETM+ 영상과 ASTER GDEM 자료를 이용한 제주도 지역의 지형보정 효과 분석)

  • Hyun, Chang-Uk;Park, Hyeong-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.393-407
    • /
    • 2012
  • This study focuses on the correction of topographic effects caused by a combination of solar elevation and azimuth, and topographic relief in single optical remote sensing imagery, and by a combination of changes in position of the sun and topographic relief in comparative analysis of multi-temporal imageries. For the Jeju Island, Republic of Korea, where Mt. Halla and various cinder cones are located, a Landsat 7 ETM+ imagery and ASTER GDEM data were used to normalize the topographic effects on the imagery, using two topographic normalization methods: cosine correction assuming a Lambertian condition and assuming a non-Lambertian c-correction, with kernel sizes of $3{\times}3$, $5{\times}5$, $7{\times}7$, and $9{\times}9$ pixels. The effects of each correction method and kernel size were then evaluated. The c-correction with a kernel size of $7{\times}7$ produced the best result in the case of a land area with various land-cover types. For a land-cover type of forest extracted from an unsupervised classification result using the ISODATA method, the c-correction with a kernel size of $9{\times}9$ produced the best result, and this topographic normalization for a single land cover type yielded better compensation for topographic effects than in the case of an area with various land-cover types. In applying the relative radiometric normalization to topographically normalized three multi-temporal imageries, more invariant spectral reflectance was obtained for infrared bands and the spectral reflectance patterns were preserved in visible bands, compared with un-normalized imageries. The results show that c-correction considering the remaining reflectance energy from adjacent topography or imperfect atmospheric correction yielded superior normalization results than cosine correction. The normalization results were also improved by increasing the kernel size to compensate for vertical and horizontal errors, and for displacement between satellite imagery and ASTER GDEM.