• Title/Summary/Keyword: Relative dynamic elastic modulus

Search Result 21, Processing Time 0.032 seconds

The Experimental Study on the Durability of Concrete under Freezing & Thawing Action and Salt attack (염해와 동해를 받는 콘크리트의 내구성 평가실험)

  • Lee, Joan-Gu;Park, Kwang-Su;Cho, Young-Kwon;Kim, Meyong-Won;Kim, Kwan-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.213-216
    • /
    • 2005
  • Salt attack and freezing & thawing test, one of the combined deterioration tests was performed to explore the mechanism of concrete structure deterioration under marine environment. Simple submerging test was proceeded to draw out its diffusion factor with salt water at the same time. Some of the mechanisms were driven with using three types of cements and four kinds of salt water concentrations. $\circ$ TBC was more durable than OPC or SRC for freezing and thawing action $\circ$ The higher chloride concentration of salt water was, the faster relative dynamic elastic modulus decreased and the higher the loss of weight was. $\circ$ The diffusion factor of TBC was smaller than those of TBC or SRC at simple submergence of concrete specimens into salt water.

  • PDF

Evaluation of Deicing Performance and Effects of Deicers of the Winter Season (동절기의 융빙제들의 융빙 성능 및 영향 평가)

  • Doh, Young-Soo;Lee, Byeong-Duck;Choi, Kwang-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.149-158
    • /
    • 2008
  • This study was estimated on performance of deicers, corrosion inhibitors and low corrodible deicer used for removal of snow or ice on the road and on influence on structure. The weight loss rate after freezing and thawing of low corrodible deicer is lower than one of deicer, corrosion inhibitors and these combination. Relative dynamic elastic modulus of all except water, low corrodible deicer and NaCl+JF-1004 was radically reduced after freezing and thawing 150 cycles. And concretes after freezing and thawing were showed severe surface damage. It was found that individual use of low corrodible deicer and corrosion inhibitors had a problem of field application because of lack of early ice melting effect and considerably low durability. Products combined with NaCl was showed rapid weight loss by metal corrosion. Therefore, It will need to circumspectly select combination of deicers having low effect on concrete pavement and bridge if possible.

  • PDF

Estimate of the Bearing Capacity on Subbase and Subgrade with Dynamic Plate Bearing Test (동평판재하시험을 이용한 도로하부 재료의 지지력 평가)

  • Youn, Ilro;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.53-60
    • /
    • 2013
  • The compaction control method of national road substructure is using field density test to determine the relative compaction and plate bearing test to check the load bearing capacity. However, these two tests digitize a construction site manager's judgment based on his experience, so mechanical basis is weak. Resilient modulus method, which is recently being used to resolve such problem, is evaluated as a rational design method of pavement structure that can rationally reflect the stress-strain state of pavement materials that is caused by the condition of load repetition of vehicle load. However, the method of measuring the resilient modulus is difficult and lengthy, and it has many problems. To replace it, light falling weight test is recently being proposed as a simple test method. Therefore, this research uses dynamic plate loading test, which quickly and simply measures the elastic modulus of the subgrade and sub-base construction and site of maintenance, to judge the possibility of compaction control of the stratum under the road, and it proposes relation formula by analyzing the result of static load test.

A Study on Mechanical Properties of Porous Concrete Using Cementless Binder

  • Lee, Jong-Won;Jang, Young-Il;Park, Wan-Shin;Kim, Sun-Woo
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.527-537
    • /
    • 2016
  • This study evaluated the mechanical characteristics and durability of porous concrete produced with a cementless binder based on ground granulated blast furnace slag (BFS), fly ash (FA) and flue gas desulfurization gypsum (CP). As a result, the void ratio was increased slightly from the target void ratio, by 1.12-1.42 %. Through evaluating the compressive strength, it was found that the compressive strength of porous concrete with cementless binder decreased in comparison to the compressive strength of porous concrete with ordinary Portland cement (OPC), but the difference was insignificant, at 0.6-1.4 MPa. Through the freeze-thawing test to evaluate the durability, it was found that the relative dynamic elastic modulus of porous concrete with cementless binder decreased to 60 % or less at 80 cycles. The result of the chemical resistance test showed that the mass reduction rate was 12.3 % at 5 % HCl solution, and 12.7 % at 12.3 and 5 % $H_2SO_4$ solutions.

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

Characterization of Electro-deposited Ni-P Layer by Using Dynamic Nano-Indentation Method (동적 나노압침법을 이용한 Ni-P 도막의 특성 연구)

  • Jung, Moo Young;Baik, Youl;Kang, Bo Kyeong;Choi, Yong;Kwon, Hyuk Joo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.197-201
    • /
    • 2018
  • Dynamic nano-indentation method was applied to characterize thin electroformed Ni-P layers. The Ni-P layers were produced in a sulphamic acid bath at $50^{\circ}C$ in $0.02A/cm^2$ for 10-60 minutes. The chemical analyses by XRD and EDX showed that the Ni-P layers were very fine grains with mainly $Ni_3P$ with Ni. The surface roughness determined by atomic force microscopy increased with thickness, which was relative to the surface morphology. The nano-hardness and the stiffness of the thin Ni-P layers with thickness of 1.9, 6.2 and $7.5{\mu}m$ were 5.52, 6.52 and 6.77 [GPa] and 56.7, 76.2 and 108.0 [${\mu}N/nm$], respectively. The elastic modulus of the Ni-P layer increased with thickness such as 37.29, 54.50 and 78.76 [GPa], respectively. The surface roughness of the electroplated Ni-P layers with diverse thickness was 8.66, 18.56 and 35.22 [nm], respectively. The enhanced nano-mechanical properties were related to mainly residual stress of the Ni-P layers.

Degradation of Cement Mortar with Supplementary Cementitious Materials Submerged in Various Oils (각종 유지류에 침지된 혼화재 치환 시멘트 모르타르의 열화특성)

  • Han, Cheon-Goo;Hwang, Chan-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.137-143
    • /
    • 2017
  • There has been a number of research on concrete durability. specially, as a research on chemical ingression, the research on the degradation against acid, alkali, and sulfate has been conducted. On the other hand, for the research on oils, especially, the influence of various oils on cement mortar with Supplementary Cementitious Materials(SCMs) is not sufficiently studied. hence, in this research, the degradation of cement mortar incorporated fly ash and blast furnace slag is researched when the cement mortar is submerged in various oils. For the result of experiment, as the content of fatty acid in the oils, the degradation of cement mortar with SCMs was occurred more, and the cement mortar with SCMs suffered more degradation than the ordinary portland cement regarding the oil submerging.

Influence of Carbonation and Freezing-thawing on the Chloride Diffusion in Concrete (탄산화 및 동결융해 현상이 콘크리트 중의 염소이온 확산에 미치는 영향 연구)

  • Kim, Dong-Baek;Kwon, Ki-Jun;Jung, Sang-Hwa;Bok, Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.57-64
    • /
    • 2007
  • Recently, the corrosion of concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation and freezing-thawing action to chloride attack in concrete structures. The test results indicate that the chloride penetration is more pronounced than the case of single chloride attack when the carbonation process is combined with the chloride attack. It is supposed that the chloride ion concentration of carbonation region is higher than the sound region because of the separation of fixed salts. Though the use of fly ash pronounces the chloride ion concentration in surface, amounts of chloride ion penetration into deep region decreases with the use of fly ash. The small reduction of relative dynamic elastic modulus induced from freezing-thawing increases the chloride ion penetration depths much. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of both chlorides and carbonation or freezing-thawing but the future studies for combined environment will assure the precise assessment.

Experimental Study on Correlation Analysis of Air-void, Air-spacing factor and Long-term Durability for Roller-compacted Concrete pavement (롤러 전압 콘크리트 포장의 공기량 및 기포간격계수와 장기 내구성의 상관관계 분석을 위한 실험적 연구)

  • Lee, Jun Hee;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.63-72
    • /
    • 2016
  • PURPOSES : The use of roller-compacted concrete pavement (RCCP) is an environmentally friendly method of construction that utilizes the aggregate interlock effect by means of a hydration reaction and roller compacting, demonstrating a superb structural performance with a relatively small unit water content and unit cement content. However, even if an excellent structural performance was secured through a previous study, the verification research on the environmental load and long-term durability was conducted under unsatisfactory conditions. In order to secure longterm durability, the construction of an appropriate internal air-void structure is required. In this study, a method of improving the long-term durability of RCCP will be suggested by analyzing the internal air-void structure and relevant durability of roller-compacted concrete. METHODS : The method of improving the long-term durability involves measurements of the air content, air voids, and air-spacing factor in RCCP that experiences a change in terms of the kind of air-entraining agent and chemical admixture proportions. This test should be conducted on the basis of test criteria such as ASTM C 457, 672, and KS F 2456. RESULTS : Freezing, thawing, and scaling resistance tests of roller compacted concrete without a chemical admixture showed that it was weak. However, as a result of conducting air entraining (AE) with an AE agent, a large amount of air was distributed with a range of 2~3%, and an air void spacing factor ranging from 200 to $300{\mu}m$ (close to $250{\mu}m$) coming from PCA was secured. Accordingly, the freezing and thawing resistance was improved, with a relative dynamic elastic modulus of more than 80%, and the scaling resistance was improved under the appropriate AE agent content rate. CONCLUSIONS : The long-term durability of RCCP has a direct relationship with the air-void spacing factor, and it can be secured only by ensuring the air void spacing factor through air entraining with the inclusion of an AE agent.

Effect of Polypropylene Fiber on the Freeze-Thaw Damage of Mortar (모르타르의 동결융해 피해에 미치는 폴리프로필렌 섬유의 영향)

  • Yoo, Jae-Chul;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.438-444
    • /
    • 2019
  • In this study, the effect of polypropylene fiber on the freeze-thaw damage of mortar was evaluated experimentally. The effects of the reinforcing of polypropylene fiber on the compressive and bending performance of mortar after 300 cycles of freeze-thaw test were evaluated by comparing the normal mortar and the mortar with polyvinyl alcohol fiber. In addition, the mass loss, relative dynamic elastic modulus, and cumulated pore volume of mortar were measured by each cycle of freeze-thaw test. As a result, it was confirmed that the fiber reinforced mortar, regardless of the fiber type, was effective not only in maintaining the performance of the compressive strength and the bending strength but also suppressing the mass loss after the freeze-thaw test of 300 cycles. Meanwhile, it was confirmed that not only polyvinyl alcohol fibers but also polypropylene fibers can effectively act to suppress the damage of the mortar by freeze-thaw. However, in order to improve the freeze-thaw resistance of mortar mixed with polypropylene fiber, it is necessary to increase the bonding performance with the cement matrix which can be expected from polyvinyl alcohol fiber.