• Title/Summary/Keyword: Relative distance

Search Result 1,031, Processing Time 0.028 seconds

Critical setback distance for a footing resting on slopes under seismic loading

  • Shukla, Rajesh Prasad;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1193-1205
    • /
    • 2018
  • A footing located on slopes possess relatively lower bearing capacity as compared to the footing located on the level ground. The bearing capacity further reduces under seismic loading. The adverse effect of slope inclination and seismic loading on bearing capacity can be minimized by proving sufficient setback distance. Though few earlier studies considered setback distance in their analysis, the range of considered setback distance was very narrow. No study has explored the critical setback distance. An attempt has been made in the present study to comprehensively investigate the effect of setback distance on footing under seismic loading conditions. The pseudo-static method has been incorporated to study the influence of seismic loading. The rate of decrease in seismic bearing capacity with slope inclination become more evident with the increase in embedment depth of footing and angle of shearing resistance of soil. The increase in bearing capacity with setback distance relative to level ground reduces with slope inclination, soil density, embedment depth of footing and seismic acceleration. The critical value of setback distance is found to increase with slope inclination, embedment depth of footing and density of soil. The critical setback distance in seismic case is found to be more than those observed in the static case. The failure mechanisms of footing under seismic loading is presented in detail. The statistical analysis was also performed to develop three equations to predict the critical setback distance, seismic bearing capacity factor ($N_{{\gamma}qs}$) and change in seismic bearing capacity (BCR) with slope geometry, footing depth and seismic loading.

Effects of Secondary Tasks on Relative Change of Skin Conductance Level and Ability to Maintain Following Distance and Vehicle Velocity during Driving of Experienced Taxi Drivers (운전 중 동시과제 수행이 택시운전자의 차간거리 및 속도유지 능력과 피부전도도 변화율에 미치는 영향)

  • Yeon, Hong-Won;Yoon, Hee-Jeong;Kim, Han-Su;Kim, Ji-Hye;Choi, Mi-Hyun;Choi, Jin-Seung;Ji, Doo-Hwan;Tack, Gye-Rae;Min, Byung-Chan;Chung, Soon-Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.9-15
    • /
    • 2012
  • The purpose of this study was to investigate the effects of the secondary tasks such as sending text message (STM) and searching navigation (SN) on skin conductance level (SCL) and driving performance of relatively aged and high-experienced drivers. The subjects included 26 taxi drivers; 12 males aged $56.3{\pm}4.4$ with $28.4{\pm}6.4$ years of driving experiences and 14 females aged $55.5{\pm}3.5$ with $19.4{\pm}5.0$ years of driving experiences. All subjects were instructed to keep a constant following distance (30m) from the car ahead and a given vehicle speed (80km/h or 100km/h) in a driving simulator. The relative change of SCL, vehicle velocity deviations, and average following distances were measured during driving only and driving with secondary tasks. The relative change of SCL, average following distance, and vehicle velocity deviation were more increased during the driving with secondary tasks than driving only. The relative change of SCL, vehicle velocity deviation, and average following distance were more affected by driving with 100km/hr than 80km/hr of a given vehicle speed. Secondary tasks increased a work load of drivers in term of SCL change, and decreased driving performance in terms of the vehicle velocity deviation and average following distance.

Change in the Concentration of Fine Particles, Temperature, and Relative Humidity as Affected by Different Volume Ratios of Interior Greening in Real Indoor Space (실내녹화 부피비율이 실공간의 미세분진농도, 온도 및 상대습도에 미치는 영향)

  • Ju, Jin-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2010
  • The study objective was to compare the interior greening volume ratios for the change in concentration of fine particle, temperature and relative humidity, and to identify the level of interior landscape volume ratio as a suitable condition to achieve the desired indoor properties. Plants were moved into a room (88m3) randomly. After moving, the volume ratio of the interior greening level was set at 0%, 1%, 2% and 3%. The concentration of fine particles was measured with a mini-volume portable air sampler (Air Metrics, USA). The temperature and relative humidity were recorded with a digital sensor (Kiwi-LTH, USA) during the experiment under different volume ratios with three replications. 1. The results of the change in concentration of the fine particles revealed a trend towards an increased volume ratio of interior greening with decreasing concentration of fine particles, compared to non-plants (0%). The concentration of fine particles at volume ratios of 0%, 1%, 2% and 3% was 55ug/$m^3$, 233ug/$m^3$, 40ug/$m^3$ and 30ug/$m^3$, respectively. 2. The change in temperature, at volume ratios of 0%, 1%, 2% and 3% was $21.2^{\circ}C$, $17.4^{\circ}C$, $16.7^{\circ}C$ and $18.9^{\circ}C$, respectively, in near interior greening, and $22.1^{\circ}C$, $18.7^{\circ}C$, $18.4^{\circ}C$ and $20.5^{\circ}C$ respectively, at a distance of 3m from the interior greening. These study results suggested that temperature was affected by volume ratio and distance from the interior greening. 3. The relative humidity, at volume ratios of 0%, 1%, 2% and 3% was 34.2%, 32.5%, 36.7%, and 46.9%, respectively, in near interior greening, and 31.2%, 26.9%, 31.4% and 38.3%, respectively, at a distance of 3m from the interior greening. With increasing volume ratio of interior landscape, there were positive and significant results between the distance difference and the relative humidity more than temperature.

A new Approach to Moving Obstacle Avoidance Problem of a Mobile Robot

  • 고낙용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.9-21
    • /
    • 1998
  • This paper a new solution approach to moving obstacle avoidance problem of a mobile robot. A new concept avoidability measure (AVM) is defined to describe the state of a pair of a robot and an obstacle regarding the collision between them. As an AVM, virtual distance function (VDF), is derived as a function of the distance from the obstacle to the robot and outward speed of the obstacle relative to the robot. By keeping the virtual distance above some positive limit value, the robot avoids the obstacle. In terms of the VDF ,an artificial potential field is constructed to repel the robot away from the obstacle and to attract the robot toward a goal location. At every sampling time, the artificial potential field is updated and the force driving the robot is derived from the gradient of the artificial potential field. The suggested algorithm drives the robot to avoid moving obstacles in real time. Since the algorithm considers the mobility of the obstacle as well as the distance, it is effective for moving obstacle avoidance. Some simulation studies show the effectiveness of the proposed approach.

  • PDF

A distance perception model for AVG based on a moving camera

  • Ant io Cunha;Jo Barroso;Cruz, Jos-Bulas;Jo L. Monteiro
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.248-251
    • /
    • 2003
  • This paper presents a distance perception model based around a moving camera, in the context of driving a self-guidance vehicle. Aligned images, by escape points, and acquired by a moving camera, present objects at different positions depending on its relative distance to camera. The objects that are farthest from the observer(the camera) gradually lose their alignment as the distance diminishes. With the current setup, this lack of alignment is noticeable up to a distance of 10 meters. In the paper, the results of real imagery tests are presented and discussed.

  • PDF

Effect of Roadside Soil and Vegetation with Lead and Zine by Motor Vehicles (자동차 매연중의 미량금속이 토양 및 식물체에 미치는 영향)

  • 강상준
    • Journal of Plant Biology
    • /
    • v.15 no.3
    • /
    • pp.9-13
    • /
    • 1972
  • This report deals with lead and zinc contamination of roadside soil and plants caused by motor vehicles as a function of distance from the road edge. The concentrations of Pb and Zn in roadside soil and plant samples from several locations decrease regularly with increasing distance from traffic. Soil samples up to 24m distance from the road edge are contaminated with more than 12.99ppm lead, and 13.40ppm zinc. The decrease in Pb and Zn contamination with increasing distance from the road is characteristically curvilinear; the relative coefficiency of Pb and Zn with distance is -0.69, -0.48, respectively. The average contents of Pb and Zn in plants are 21.5ppm and 30.00ppm. It is suggested that the contamination is related to the composition of gasoline, motor oil and to roadside of the residues of this metals.

  • PDF

A probabilistic seismic demand model for required separation distance of adjacent structures

  • Rahimi, Sepideh;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.147-155
    • /
    • 2022
  • Regarding the importance of seismic pounding, the available standards and guidelines specify minimum separation distance between adjacent buildings. However, the rules in this field are generally based on some simple assumptions, and the level of confidence is uncertain. This is attributed to the fact that the relative response of adjacent structures is strongly dependent on the frequency content of the applied records and the Eigen frequencies of the adjacent structures as well. Therefore, this research aims at investigating the separation distance of the buildings through a probabilistic-based algorithm. In order to empower the algorithm, the record-to-record uncertainties, are considered by probabilistic approaches; besides, a wide extent of material nonlinear behaviors can be introduced into the structural model by the implementation of the hysteresis Bouc-Wen model. The algorithm is then simplified by the application of the linearization concept and using the response acceleration spectrum. By implementing the proposed algorithm, the separation distance in a specific probability level can be evaluated without the essential need of performing time-consuming dynamic analyses. Accuracy of the proposed method is evaluated using nonlinear dynamic analyses of adjacent structures.

New Calibration Methods with Asymmetric Data

  • Kim, Sung-Su
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.759-765
    • /
    • 2010
  • In this paper, two new inverse regression methods are introduced. One is a distance based method, and the other is a likelihood based method. While a model is fitted by minimizing the sum of squared prediction errors of y's and x's in the classical and inverse methods, respectively. In the new distance based method, we simultaneously minimize the sum of both squared prediction errors. In the likelihood based method, we propose an inverse regression with Arnold-Beaver Skew Normal(ABSN) error distribution. Using the cross validation method with an asymmetric real data set, two new and two existing methods are studied based on the relative prediction bias(RBP) criteria.

Comparative Study of Two Congestion Management Methods for the Restructured Power Systems

  • Manikandan, B.V.;Raja, S. Charles;Venkatesh, P.;Mandala, Manasarani
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.302-310
    • /
    • 2011
  • Congestion management is one of the most challenging tasks of a system operator to ensure the operation of transmission system within operating limits. In this paper, cluster/zone method and relative electrical distance (RED) method for congestion management are compared based on the considered parameters. In the cluster/zone method, rescheduling of generation is based on user impact on congestion through the use of transmission congestion distribution factors. In the RED method, the desired proportions of generations for the desired overload relieving are obtained. Even after generation rescheduling, if congestion exists, load curtailment option is also introduced. Rescheduling cost, system cost, losses, and voltage stability parameter are also calculated and compared for the above two methods of congestion management. The results are illustrated on sample 6-bus, IEEE 30-bus, and Indian utility 69-bus systems.

Robust Design of Structural and Mechanical Systems using Concept of Allowable Load Set (허용하중집합 개념을 이용한 기계/구조 시스템의 강건 설계)

  • Kwak, Byung-Man
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.333-338
    • /
    • 2007
  • The concept of "Allowable Load Set (ALS)" introduced by the author allows an easy understanding of load and strength characteristics of a structure in relation to its integrity under uncertainties. Two criteria of safety are introduced: A relative safety index denotes the distance to the boundary of the ALS and a normalized safety index is a distance in terms of functional value. They have been utilized in several examples, including multi-body mechanical systems such as a biomechanical system. Both formulations amount to robust designs in the sense that designs most insensitive to uncertainties are obtained in the context of newly defined safety indices, without using any input probability information.

  • PDF