• Title/Summary/Keyword: Relative damage

Search Result 570, Processing Time 0.025 seconds

Full-scale Shaking Table Test of Uninterruptible Power Supply Installed in 2-stories Steel Structure (2층 철골 구조물에 설치된 무정전전원장치의 실규모 진동대 실험연구)

  • Lee, Ji-Eon;Park, Won-Il;Choi, Kyoung-Kyu;Oh, Sang-Hoon;Park, Hoon-Yang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.29-38
    • /
    • 2022
  • In this study, the shaking table tests were carried out on six types of non-structural elements installed on a full-scale two-story steel structure. The shaking table tests were performed for non-structural elements with and without seismic isolators. In this study, the seismic performance of Uninterruptible Power Supply (UPS) specimens was tested and investigated. Non-seismic details were composed of conventional channel section steel beams, and the seismic isolators were composed of high damping rubber bearing (HDRB) and wire isolator. The input acceleration time histories were artificially generated to satisfy the requirements proposed by the ICC-ES AC156 code. Based on the test results, the damage and dynamic characteristics of the UPS with the seismic isolator were investigated in terms of the natural frequency, damping ratio, acceleration time history responses, dynamic amplification factors, and relative displacements. The results from the shaking table showed that the dynamic characteristics of the UPS including the acceleration response were significantly improved when using the seismic isolator.

Evaluation of Water Quality Change by Membrane Damage to Pretreatment Process on SDI in Wastewater Reuse (하수재이용에서 전처리 막 손상에 의한 수질변화가 SDI에 미치는 영향평가)

  • Lee, Min Soo;Seo, Dongjoo;Lee, Yong-Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.253-263
    • /
    • 2022
  • This study suggests a guideline for designing unit process of wastewater reuse in terms of a maintenance of the process based on critical parameters to draw a high quality performance of RO unit. Defining the parameters was done by applying membrane integrity test (MIT) in pretreatment process utilizing lab-scale MF. SDI is utilized for judging whether permeate is suitable to RO unit. However, result said TOC concentration matching with particle count analysis is better for judging the permeate condition. When membrane test pressure (Ptest) was measured to derive log removal value in PDT, virgin state of membrane fiber was used to measure dynamic contact angle utilizing surface tension of the membrane fiber. Actually, foulant affects to the state of membrane surface, and it decreases the Ptest value along with time elapsed. Consequently, LRVDIT is also affected by Ptest value. Thus, sensitivity of direct integrity test descends with result of Ptest value change, so Ptest value should be considered not the virgin state of the membrane but its current state. Overall, this study focuses on defining design parameters suitable to MF pretreatment for RO process in wastewater reuse by assessing its impact. Therefore, utilities can acknowledge that the membrane surface condition must be considered when users conduct the direct integrity test so that Ptest and other relative parameter used to calculate LRVDIT are adequately measured.

Enhancement of durability of tall buildings by using deep-learning-based predictions of wind-induced pressure

  • K.R. Sri Preethaa;N. Yuvaraj;Gitanjali Wadhwa;Sujeen Song;Se-Woon Choi;Bubryur Kim
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.237-247
    • /
    • 2023
  • The emergence of high-rise buildings has necessitated frequent structural health monitoring and maintenance for safety reasons. Wind causes damage and structural changes on tall structures; thus, safe structures should be designed. The pressure developed on tall buildings has been utilized in previous research studies to assess the impacts of wind on structures. The wind tunnel test is a primary research method commonly used to quantify the aerodynamic characteristics of high-rise buildings. Wind pressure is measured by placing pressure sensor taps at different locations on tall buildings, and the collected data are used for analysis. However, sensors may malfunction and produce erroneous data; these data losses make it difficult to analyze aerodynamic properties. Therefore, it is essential to generate missing data relative to the original data obtained from neighboring pressure sensor taps at various intervals. This study proposes a deep learning-based, deep convolutional generative adversarial network (DCGAN) to restore missing data associated with faulty pressure sensors installed on high-rise buildings. The performance of the proposed DCGAN is validated by using a standard imputation model known as the generative adversarial imputation network (GAIN). The average mean-square error (AMSE) and average R-squared (ARSE) are used as performance metrics. The calculated ARSE values by DCGAN on the building model's front, backside, left, and right sides are 0.970, 0.972, 0.984 and 0.978, respectively. The AMSE produced by DCGAN on four sides of the building model is 0.008, 0.010, 0.015 and 0.014. The average standard deviation of the actual measures of the pressure sensors on four sides of the model were 0.1738, 0.1758, 0.2234 and 0.2278. The average standard deviation of the pressure values generated by the proposed DCGAN imputation model was closer to that of the measured actual with values of 0.1736,0.1746,0.2191, and 0.2239 on four sides, respectively. In comparison, the standard deviation of the values predicted by GAIN are 0.1726,0.1735,0.2161, and 0.2209, which is far from actual values. The results demonstrate that DCGAN model fits better for data imputation than the GAIN model with improved accuracy and fewer error rates. Additionally, the DCGAN is utilized to estimate the wind pressure in regions of buildings where no pressure sensor taps are available; the model yielded greater prediction accuracy than GAIN.

The Effect of Soil Amended with β-glucan under Drought Stress in Ipomoea batatas L. (𝛽-glucan 토양혼합에 따른 고구마의 가뭄피해 저감 효과 )

  • Jung-Ho Shin;Hyun-Sung Kim;Gwan-Ju Seong;Won Park;Sung-Ju Ahn
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.64-72
    • /
    • 2023
  • Biopolymer is a versatile material used in food processing, medicine, construction, and soil reinforcement. 𝛽-glucan is one of the biopolymers that improves the soil water content and ion adsorption in a drought or toxic metal contaminated land for plant survival. We analyzed drought stress damage reduction in sweet potatoes (Ipomoea batatas L. cv. Sodammi) by measuring the growth and major protein expression and activity under 𝛽-glucan soil amendment. The result showed that sweet potato leaf length and width were not affected by drought stress for 14 days, but sweet potatoes grown in 𝛽-glucan-amended soil showed an effect in preventing wilting caused by drought in phenotypic changes. Under drought stress, sweet potato leaves did not show any changes in electrolyte leakage, but the relative water content was higher in sweet potatoes grown in 𝛽-glucan-amended soil than in normal soil. 𝛽-glucan soil amendment increased the expression of plasma membrane (PM) H+-ATPase, but it decreased the aquaporin PIP2 (plasma membrane intrinsic protein 2) in sweet potatoes under drought stress. Moreover, water maintenance affected the PM H+-ATPase activity, which contributed to tolerance under drought stress. These results indicate that 𝛽-glucan soil amendment improves the soil water content during drought and affects the water supply in sweet potatoes. Consequently, 𝛽-glucan is a potential material for maintaining soil water contents, and analysis of the major PM proteins is one of the indicators for evaluating the biopolymer effect on plant survival under drought stress.

Molecular physiological inhibitory effects of chloroacetanilide herbicide pretilachlor on marine dinoflagellate Prorocentrum minimum (해양 와편모조류 Prorocentrum minimum에 대한 아세트아닐라이드계 제초제 프레틸라클로르의 분자 생물학적 저해 효과)

  • Hansol Kim;Jang-Seu Ki
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.452-462
    • /
    • 2021
  • Pretilachlor (PRE) is a common acetanilide herbicide used worldwide. However, its effects on aquatic organisms, particularly marine photosynthetic life, are not sufficiently known. Herein, we evaluated the toxic effects of PRE by physiological and molecular parameters in the photosynthetic dinoflagellate Prorocentrum minimum. The cell density, pigment content, and photosynthetic parameters (Fv/Fm and PIABS) were considerably decreased with increased PRE exposure time and doses. In addition, photosynthesis-related genes, PmpsbA, PmpsaA, and PmatpB, were significantly upregulated when exposed to 1.0 mg L-1 of PRE for 24 h (p<0.001). In 72 h treatment, the relative gene expression was significantly increased (0.1 and 0.5 mg L-1; p<0.01). In contrast, PmrbcL was decreased or little changed compared to the controls. Reactive oxygen species (ROS) increased after 24 h exposure (p<0.001). However, the transcriptional fold-changes in glutathione S-transferase (GST) were significantly increased (0.5 and 1.0 mg L-1; p<0.001) at 72 h. These findings suggested that the PmGST might be involved in PRE detoxification in P. minimum. In addition, PRE may affect the photosystem function in phytoplankton similar to other acetanilides, causing severe damage or cell death.

An Experimental Study for Characteristics Evaluation of Cement Mortar Using Infrared Thermography Technique (적외선 화상기법을 이용한 시멘트 모르타르 특성의 실험적 평가)

  • Kwon, Seung-Jun;Maria, Q. Feng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.53-59
    • /
    • 2010
  • Recently, NDTs (Non-Destructive Techniques) using infrared camera are widely studied for detection of damage and void in RC (reinforced concrete) structures and they are also considered as an effective techniques for maintenance of infrastructures. The temperature on concrete surface depends on material and thermal properties such as specific heat, thermal conductivity, and thermal diffusion coefficient. Different porosity on cement mortar due to different mixture proportions can show different heat behavior in cooling stage. The porosity can affect physical and durability properties like strength and chloride diffusion coefficient as well. In this paper, active thermography which uses flash for heat induction is utilized and thermal characteristics on surface are evaluated. Samples of cement mortar with W/C (water to cement ratio) of 0.55 and 0.65 are prepared and physical properties like porosity, compressive strength, and chloride diffusion coefficient are evaluated. Then infrared thermography technique is carried out in a constant room condition (temperature $20{\sim}22^{\circ}C$ and relative humidity 55-60%). The mortar samples with higher porosity shows higher residual temperature at the cooling stage and also shows reduced critical time which shows constant temperature due to back wall effect. Furthermore, simple equation for critical time of back wall effect is suggested with porosity and experimental constants. These characteristics indicate the applicability of infrared thermography as an NDT for quality assessment of cement based composite like concrete. Physical properties and thermal behavior in cement mortar with different porosity are analyzed in discussed in this paper.

Modeling Traffic Accident Characteristics and Severity Related to Drinking-Driving (음주교통사고 영향요인과 심각도 분석을 위한 모형설정)

  • Jang, Taeyoun;Park, Hyunchun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6D
    • /
    • pp.577-585
    • /
    • 2010
  • Traffic accidents are caused by several factors such as drivers, vehicles, and road environment. It is necessary to investigate and analyze them in advance to prevent similar and repetitive traffic accidents. Especially, the human factor is most significant element and traffic accidents by drinking-driving caused from human factor have become social problem to be paid attention to. The study analyzes traffic accidents resulting from drinking-driving and the effects of driver's attributes and environmental factors on them. The study is composed as two parts. First, the log-linear model is applied to analyze that accidents by drinking or non-drinking driving associate with road geometry, weather condition and personal characteristics. Probability is tested for drinking-driving accidents relative to non-drinking drive accidents. The study analyzes probability differences between genders, between ages, and between kinds of vehicles through odds multipliers. Second, traffic accidents related to drinking are classified into property damage, minor injury, heavy injury, and death according to their severity. Heavy injury is more serious than minor one and death is more serious than heavy injury. The ordinal regression models are established to find effecting factors on traffic accident severity.

A Study on the Correlation between SLC25A26 Polymorphism and Gastritis and Gastric Ulcers in Koreans (한국인의 SLC25A26 유전자 다형성과 위염, 위궤양과의 상관성에 관한 연구)

  • Soyeun PARK;Dahyun HWANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.291-297
    • /
    • 2023
  • Gastritis is an inflammation of the gastric mucosa and gastric ulcers are a break in the mucosa of the stomach lining. Past research on gastritis and gastric ulcers has been mainly conducted from the perspective that environmental factors are the primary cause of these gastric diseases. However, recently the importance of genetic factors has been emphasized due to current developments in genetic research. The SLC25A26 gene is believed to be associated with the accumulation of reactive oxygen species. Oxidative stress promotes an inflammatory response, which increases the production of free radicals and causes cellular damage, and these lead to the development of gastric diseases. In this study, the correlation between SLC25A26 and gastric diseases was analyzed. Polymorphisms in SLC25A26 were analyzed in 1,369 domestic gastric disease patients and 7,471 healthy controls. As a result, 11 single nucleotide polymorphisms (SNPs) (in the genotype) and 13 SNPs (in the imputation) showed statistical significance (P<0.05), and high relative risk of gastric diseases. Among them, the rs13874 allele of SLC25A26 showed a highly significant association with gastric diseases. In the genotype-based mRNA expression analysis, the minor allele (C) group showed increased mRNA expression and this could increase oxidative stress. In conclusion, SLC25A26 polymorphisms are associated with gastric diseases. These results may provide a basis for new guidelines for gastric disease management in the Korean population.

Experimental Study for Confirmation of Relaxation Zone in the Underground Cavity Expansion (지중 내 공동 확장에 따른 이완영역 확인을 위한 실험적 연구)

  • Kim, Youngho;Kim, Hoyeon;Kim, Yeonsam;You, Seung-Kyong;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.231-240
    • /
    • 2017
  • Recently, there have been frequent occurrences of ground sink in the urban area, which have resulted in human and material damage and are accompanied by economic losses. This is caused by artificial factors such as soil loss, poor compaction, horizontal excavation due to the breakage of the aged sewage pipe, and lack of water proof at vertical excavation. The ground sink can be prevented by preliminary restoration and reinforcement through exploration, but it can be considered that it is not suitable for urgent restoration by the existing method. In this study, a model experiment was carried out to simulate the in-ground cavities caused by groundwater flow for developing non-excavation urgent restoration in underground cavity and the range of the relaxation zone was estimated by detecting the around the cavity using a relaxation zone detector. In addition, disturbance region and relaxation region were separated by injecting gypsum into cavity formed in simulated ground. The shape of the underground cavity due to the groundwater flow was similar to that of the failure mode III formed in the dense relative density ground due to water pipe breakage in the previous study. It was confirmed that the relaxed region detected using the relaxation zone detector is formed in an arch shape in the cavity top. The length ratio of the relaxation region to the disturbance region in the upper part of the cavity center is 2: 1, and it can be distinguished by the difference in the decrease of the shear resistance against the external force. In other words, it was confirmed that the secondary damage should not occur in consideration of the expandability of the material used as the injecting material in the pre-repair and reinforcement, and various ground deformation states will be additionally performed through additional experiments.

Studies on Selection of Freezing Resistant Clones of Cryptomeria japonica (삼(杉)나무 내한성(耐寒性) 품종(品種) 선발(選拔)에 관한 연구(硏究))

  • Hong, Sung Gak;Cho, Tae Hwan;Hwang, Jeung
    • Journal of Korean Society of Forest Science
    • /
    • v.51 no.1
    • /
    • pp.22-35
    • /
    • 1981
  • This study was designed to know difference in degree of dehardening and rehardening respectively by artificial high and low temperature treatments among different clonal seedlings and seedlings from different seed sources of Cryptomeria japonica which have been grown under the cold areas in Japan and Korea. High temperature treatment was done with 15 to $20^{\circ}C$ under 100% relative humidity for one to nine days and low temperature treatment was carried with $-7^{\circ}C$ for one to three days. Occasionaly, high temperature treatment was combined and followed by low temperature treatment. The ability of stem section to delay dehardening by high temperature treatment and/or to hasten rehardening by low temperature treatment was used as an indicator of adaptability under extreme temperature fluctuation in nature. Clones and seedlings from different seed sources which showed greater freezing resistance than others after artificial high and/or low temperature treatments were selected over two to three time periods: early winter, mid winter and early spring in 1977 to 1980. These were Seoul #7, and #9, Namboo #3, and #4, Sung-Kang #11, Chung-Sam #8 and Huek-Suk #9. These selected seedlings might have survival advantage to withstand early and late frost damage, especially the critical frost damage of the basal stem, since it was known to be induced by lowering freezing resistance of the basal part when exposed to the high temperature near the ground during the day. Large variation in freezing resistance and degree of dehardening and rehardening was found among clonal or seed sources and among individuals within a seed source, but was not related to the difference in climatic conditions where the parent trees was selected. These indicated the possibility of future breeding work for more cold resistant family of Cryptomeria japonica.

  • PDF