• Title/Summary/Keyword: Relative chamber width

Search Result 13, Processing Time 0.034 seconds

Experimental Study for Wave Reflection of Partially Perforated Caisson by Slit Shape of Front Wall (부분 유공케이슨의 Slit 형상에 따른 반사특성 실험)

  • Lee, Jong-In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1455-1462
    • /
    • 2013
  • This study examines the reflection of a partially perforated wall with single chamber by 2D and 3D hydraulic experiments. The effects of slit shape on the front wall, relative chamber width and wave steepness were discussed. For the normal incident wave condition, the reflections of horizontal slit case were lower than that of the vertical slit with the similar porosity, but the differences are not significant. When the wave steepness is relatively small, the reflection coefficients are large. In the oblique incidence, the normalized wave heights along a perforated wall with similar porosity are almost same for the vertical and horizontal slit walls and therefore the difference by slit shape can be ignored.

Experiments for Side Wall Effects of a Perforated Structure Under Oblique Incident Waves (경사입사파 조건에서 유공구조물의 격벽효과에 대한 실험)

  • Lee, Jong-In;Kim, Sun Ou;Kim, Kyoung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2343-2350
    • /
    • 2013
  • The wave height distributions in front of a vertically perforated wall structures for obliquely incident uni-directional irregular waves are mainly investigated by using 3D hydraulic experiments. The difference and similarity of wave propagation along the plain and perforated wall structures are investigated and particularly the effects of side walls in chamber and relative chamber width are analyzed. This study shows that the wave height distribution patterns for normalized wave heights in front of structure is significantly different between the plain and perforated wall structures, and the side wall in the chamber suppresses the growth of waves.

The Plastic Cracking Properties of Fly Ash Concrete with Various Curing Conditions (양생조건에 따른 플라이애쉬 콘크리트의 소성수축균열 특성)

  • Nam, Jae-Hyun;Park, Jong-Hwa
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.91-98
    • /
    • 2007
  • In this study, the property and plastic cracking pattern of concrete were compared and analyzed with the replacement ratio of fly ash 0, 5, 10, 15, 20% by cement weight. And curing conditions of concrete were given variously such as indoors(with wind speed as 0, 300, 500m/min), outdoors and chamber. The hydration temperature had a tendency to decrease as the replacement ratio of fly ash increased, and in the case of the wind speed 0m/min, it was showed that the moment that the amount of evaporation of water from surface of reference concrete was more than the volume of bleeding was 90 min since casting concrete. The time that the crack initiated had a tendency to be more quickly as the replacement ratio of fly ash increased. The number, length, width and area of crack in the indoor curing, exposed outdoor curing, enclosed outdoor curing had a tendency to decrease as the replacement ratio of fly ash increased. The crack had a tendency to decrease in sequence of exposed outdoor, enclosed outdoor curing, indoors curing. The outbreak of cracking by the change of temperature and humidity was affected by relative humidity more than temperature and the cracking had a tendency to increase as relative humidity lowered.

Growth Characteristics of Lettuce under Low Pressure (저압조건에서 상추의 생육 특성)

  • Park, Jong-Hyun;Kim, Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.303-308
    • /
    • 2009
  • This study was conducted to analyze the feasibility of plant growth under low pressure and to investigate the effect of pressure on plant growth. Three levels of pressures (25, 50, and 101.3 kPa (control)) were provided to analyze the growth of Lettuce (Lactuca sativa L.) as affected by low pressure. Photoperiod, air temperature, and photosynthetic photon flux were set at 16/8 h, 26/$18^{\circ}C$, and $240{\mu}mol{\cdot}m^{-2}s^{-1}$, respectively. Growth characteristics of lettuce were measured on 7 days and 14 days after experiment. Leaf length, leaf width, leaf area, and root dry weight of lettuce measured on 7 days under 25 and 50 kPa were significant as compared to the control. Leaf length, top dry matter and root dry matter of lettuce measured on 14 days were significantly different under 25 and 50 kPa. From these results, we confirmed that lettuce could be grown under low pressure. However high relative humidity by evapotranspiration from leaves and growing beds under low pressure caused the condensation on the inner surface of the chamber. Therefore in a low pressure chamber, humidity control is required to maintain the relative humidity at a proper level.

Comparative Study on Microwave Probes for Plasma Density Measurement by FDTD Simulations

  • Kim, D.W.;You, S.J.;Na, B.K.;Kim, J.H.;Chang, H.Y.;Oh, W.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.218.1-218.1
    • /
    • 2014
  • In order to measure the absolute plasma density, various probes are proposed and investigated and microwave probes are widely used for its advantages (Insensitivity to thin non-conducting material deposited by processing plasmas, High reliability, Simple process for determination of plasma density, no complicate assumptions and so forth). There are representative microwave probes such as the cutoff probe, the hairpin probe, the impedance probe, the absorption probe and the plasma transmission probe. These probes utilize the microwave interactions with the plasma-sheath and inserted structure (probe), but frequency range used by each probe and specific mechanisms for determining the plasma density for each probe are different. In the recent studies, behaviors of each microwave probe with respect to the plasma parameters of the plasma density, the pressure (the collision frequency), and the sheath width is abundant and reasonably investigated, whereas relative diagnostic characteristics of the probes by a comparative study is insufficient in spite of importance for comprehensive applications of the probes. However, experimental comparative study suffers from spatially different plasma characteristics in the same discharge chamber, a low-reproducibility of ignited plasma for an uncertainty in external discharge parameters (the power, the pressure, the flow rate and so forth), impossibility of independently control of the density, the pressure, and the sheath width as well as expensive and complicate experimental setup. In this paper, various microwave probes are simulated by finite-different time-domain simulation and the error between the input plasma density in FDTD simulations and the measured that by the unique microwave spectrums of each probe is obtained under possible conditions of plasma density, pressure, and sheath width for general low-temperature plasmas. This result shows that the each probe has an optimum applicable plasma condition and reliability of plasma density measurement using the microwave probes can be improved by the complementary use of each probe.

  • PDF

Quality Assurance for Intensity Modulated Radiation Therapy (세기조절방사선치료(Intensity Modulated Radiation Therapy; IMRT)의 정도보증(Quality Assurance))

  • Cho Byung Chul;Park Suk Won;Oh Do Hoon;Bae Hoonsik
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.275-286
    • /
    • 2001
  • Purpose : To setup procedures of quality assurance (OA) for implementing intensity modulated radiation therapy (IMRT) clinically, report OA procedures peformed for one patient with prostate cancer. Materials and methods : $P^3IMRT$ (ADAC) and linear accelerator (Siemens) with multileaf collimator are used to implement IMRT. At first, the positional accuracy, reproducibility of MLC, and leaf transmission factor were evaluated. RTP commissioning was peformed again to consider small field effect. After RTP recommissioning, a test plan of a C-shaped PTV was made using 9 intensity modulated beams, and the calculated isocenter dose was compared with the measured one in solid water phantom. As a patient-specific IMRT QA, one patient with prostate cancer was planned using 6 beams of total 74 segmented fields. The same beams were used to recalculate dose in a solid water phantom. Dose of these beams were measured with a 0.015 cc micro-ionization chamber, a diode detector, films, and an array detector and compared with calculated one. Results : The positioning accuracy of MLC was about 1 mm, and the reproducibility was around 0.5 mm. For leaf transmission factor for 10 MV photon beams, interleaf leakage was measured $1.9\%$ and midleaf leakage $0.9\%$ relative to $10\times\;cm^2$ open filed. Penumbra measured with film, diode detector, microionization chamber, and conventional 0.125 cc chamber showed that $80\~20\%$ penumbra width measured with a 0.125 cc chamber was 2 mm larger than that of film, which means a 0.125 cc ionization chamber was unacceptable for measuring small field such like 0.5 cm beamlet. After RTP recommissioning, the discrepancy between the measured and calculated dose profile for a small field of $1\times1\;cm^2$ size was less than $2\%$. The isocenter dose of the test plan of C-shaped PTV was measured two times with micro-ionization chamber in solid phantom showed that the errors upto $12\%$ for individual beam, but total dose delivered were agreed with the calculated within $2\%$. The transverse dose distribution measured with EC-L film was agreed with the calculated one in general. The isocenter dose for the patient measured in solid phantom was agreed within $1.5\%$. On-axis dose profiles of each individual beam at the position of the central leaf measured with film and array detector were found that at out-of-the-field region, the calculated dose underestimates about $2\%$, at inside-the-field the measured one was agreed within $3\%$, except some position. Conclusion : It is necessary more tight quality control of MLC for IMRT relative to conventional large field treatment and to develop QA procedures to check intensity pattern more efficiently. At the conclusion, we did setup an appropriate QA procedures for IMRT by a series of verifications including the measurement of absolute dose at the isocenter with a micro-ionization chamber, film dosimetry for verifying intensity pattern, and another measurement with an array detector for comparing off-axis dose profile.

  • PDF

Measurement of electron temperature and density using Stark broadening of the coaxial focused plasma for extreme ultraviolet (EUV) lithography

  • Lee, Sung-Hee;Hong, Young-June;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.475-475
    • /
    • 2010
  • We have generated Ar plasma in dense plasma focus device with coaxial electrodes for extreme ultraviolet (EUV) lithography and investigated an emitted visible light for electro-optical plasma diagnostics. We have applied an input voltage 4.5 kV to the capacitor bank of 1.53 uF and the diode chamber has been filled with Ar gas of pressure 8 mTorr. The inner surface of the cylindrical cathode has been attatched by an acetal insulator. Also, the anode made of tin metal. If we assumed that the focused plasma regions satisfy the local thermodynamic equilibrium (LTE) conditions, the electron temperature and density of the coaxial plasma focus could be obtained by Stark broadening of optical emission spectroscopy (OES). The Lorentzian profile for emission lines of Ar I of 426.629 nm and Ar II of 487.99 nm were measured with a visible monochromator. And the electron density has been estimated by FWHM (Full Width Half Maximum) of its profile. To find the exact value of FWHM, we observed the instrument line broadening of the monochromator with a Hg-Ar reference lamp. The electron temperature has been calculated using the two relative electron density ratios of the Stark profiles. In case of electron density, it has been observed by the Stark broadening method. This experiment result shows the temporal behavior of the electron temperature and density characteristics for the focused plasma. The EUV emission signal whose wavelength is about 6 ~ 16 nm has been detected by using a photo-detector (AXUV-100 Zr/C, IRD). The result compared the electron temperature and density with the temporal EUV signal. The electron density and temperature were observed to be $10^{16}\;cm^{-3}$ and 20 ~ 30 eV, respectively.

  • PDF

Environment in Apartment Verandas at Three Floors, and Change in Growth of Selected Ornamental Plants under Simulated Light Intensities (아파트 베란다 층별 기상환경 측정과 이에 따른 모의 광도가 오색마삭줄과 피토니아의 생육에 미치는 영향)

  • Son, Moon-Sook;Song, Ju-Yeon;Jeong, Byoung-Ryong
    • Journal of agriculture & life science
    • /
    • v.45 no.3
    • /
    • pp.43-51
    • /
    • 2011
  • This project was conducted to measure actual temperature, relative humidity (RH), and light intensity at different apartment floors and to suggest suitable indoor plants by investigating morphological changes of Treophelosparmum asiatioum and Fittonia verchaffeltii var. argyroneura as affected by light intensity. Temperature and RH in apartment verandas were measured in three different (2nd, 9th, and 16th) floors on three different buildings for 30 days seasonally. The light intensity, temperature, and RH were recorded outside (parking area) and inside apartment verandas for 24 hours on a selected sunny summer day (between Aug. 19 and Sept. 14, 2008). Based on the first study, we investigated effect of simulated light intensity (40, 70, 100, and $600{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) on changes in growth and development of T. asiatioum and F. verchaffeltii var. argyroneurain growth chambers. However, daily mean light intensity of 2nd, 9th, and 16th floors was different each other as it was about 40, 70, and $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. In the growth chamber experiment, plant height, internode length, and leaf length and width were not affected significantly by light intensity, but changes in leaf color were apparent in the new leaves with the increasing light intensity. The results suggest that T. asiatioum could be best fit to high, and F. verchaffeltii var. argyroneura to lower floor verandas, considering their aesthetic values.

The Interdigitated-Type Capacitive Humidity Sensor Using the Thermoset Polyimide (열경화성 폴리이미드를 이용한 빗살전극형 정전용량형 습도센서)

  • Hong, Soung-Wook;Kim, Young-Min;Yoon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.604-609
    • /
    • 2019
  • In this study, we fabricated a capacitive humidity sensor with interdigitated (IDT) electrodes using a thermosetting polyimide as a humidifying material. First, the number of electrodes, thickness, and spacing of the polyimide film were optimized, and a mask was designed and fabricated. The sensor was fabricated on a silicon substrate using semiconductor processing equipment. The area of the sensor was $1.56{\times}1.66mm^2$, and the width of the electrode and the gap between the electrodes were each $3{\mu}m$. The number of electrodes was 166, and the length of an electrode was 1.294 mm for the sensitivity of the sensor. The sensor was then packaged on a PCB for measurement. The sensor was inserted into a chamber environment with a temperature of $25^{\circ}C$ and connected to an LCR meter to measure the change in capacitance at relative humidity (RH) of 20% to 90%, 1 V, and 20 kHz. The results showed a sensitivity of 26fF/%RH, linearity of < ${\pm}2%RH$, and hysteresis of < ${\pm}2.5%RH$.

Effects of Temperature and Irrigation Intervals on Photosynthesis, Growth and Growth Analysis of Pot-grown Cucumber Seedlings (온도와 관수 주기가 오이 포트 묘의 광합성, 생육 및 생장 해석에 미치는 영향)

  • Jin Hee An;Eun Yong Choi;Yong Beom Lee;Ki Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.148-156
    • /
    • 2023
  • This study was conducted in an indoor cultivation room and chamber where environmental control is possible to investigate the effect of temperature and irrigation interval on photosynthesis, growth and growth analysis of potted seedling cucumber. The light intensity (70 W·m-2) and humidity (65%) were set to be the same. The experimental treatments were six combinations of three different temperatures, 15/10℃, 25/20℃, and 35/25℃, and two irrigation intervals, 100 mL per day (S) and 200 mL every 2 days (L). The treatments were named 15S, 15L, 25S, 25L, 35S, and 35L. Seedlings at 0.5 cm in height were planted in pots (volume:1 L) filled with sandy loam and treated for 21 days. Photosynthesis, transpiration rate and stomatal conductance at 14 days after treatment were highest in 25S. These were higher in S treatments with a shorter irrigation interval than L treatments. Total amount of irrigation water was supplied evenly at 2 L, but the soil moisture content was highest at 15S and lowest at 25S > 15L > 25L, 35S and 35L in that order. Humidity showed a similar trend at 15/10℃ (61.1%) and 25/20℃ (67.2%), but it was as high at 35/25℃ (80.5%). Cucumber growth (plant height, leaf length, leaf width, chlorophyll content, leaf area, fresh weight and dry weight) on day 21 was the highest in 25S. Growth parameters were higher in S with shorter irrigation intervals. Yellow symptom of leaf was occurred in 89.9% at 35S and 35L, where the temperature was high. Relative growth rate (RGR) and specific leaf weight (SLA) were high at 25/20℃ (25S, 25L), RGR tended to be high in the S treatment, and SLA in the L treatment. Water use efficiency (WUE) was high in the order of 25S, 25L > 15S > 15L, 35S, and 35L. As a result of the above, the growth and WUE were high at the temperature of 25/20℃.