• Title/Summary/Keyword: Relative Velocity Method

Search Result 329, Processing Time 0.031 seconds

Inverse Dynamic Analysis of Mechanical Systems Using the Velocity Transformation Technique (속도변환기법을 이용한 기계시스템의 역동학적 해석)

  • Lee, Byeong-Hun;Yang, Jin-Saeng;Jeon, U-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3741-3747
    • /
    • 1996
  • This paper presents a method for the inverse dynamic anlaysis of mechanical systems. Actuating forces(or torques) depending on the driving constraints are analyzed in the relative coordinate space using the velocity transformation technique. A systematic method to compose the inverse velocity transformation matrix, which is used to determine the joint reaction forces, is proposed. Two examples are taken to verify the method developed here.

An upper bound analysis for closed-die forging of spur gear forms (스퍼어 기어의 밀폐단조에 관한 상계해석)

  • Park, J.C.;Hur, K.D.;Park, J.U.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.26-37
    • /
    • 1994
  • A kinematically admissible velocity field for the numerical analysis of closed-die forging process of spur gear is proposed. The velocity field is divided into three regions of deformation. In the analysis, the involute curve is approximated to be straight line and the upper-bound method is used to calculate energy dissipation rate. A constant frictional frictional factor has been assumed on the contacting surfaces. The effects of root diameter, number of teeth, and friction factor are determined on the relative forging pressure. The frictionless relative pressure is independent of root diameter for the same number of teeth, but increases with the number of teeth on a given root diameter. In the presence of friction, the relative forging presure increasing root diameter at the start of forging, but decreases with increasing root diameter in the processing of forging.

  • PDF

Target Tracking Control of Mobile Robots with Vision System in the Absence of Velocity Sensors (속도센서가 없는 비전시스템을 이용한 이동로봇의 목표물 추종)

  • Cho, Namsub;Kwon, Ji-Wook;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.852-862
    • /
    • 2013
  • This paper proposes a target tracking control method for wheeled mobile robots with nonholonomic constraints by using a backstepping-like feedback linearization. For the target tracking, we apply a vision system to mobile robots to obtain the relative posture information between the mobile robot and the target. The robots do not use the sensors to obtain the velocity information in this paper and therefore assumed the unknown velocities of both mobile robot and target. Instead, the proposed method uses only the maximum velocity information of the mobile robot and target. First, the pseudo command for the forward linear velocity and the heading direction angle are designed based on the kinematics by using the obtained image information. Then, the actual control inputs are designed to make the actual forward linear velocity and the heading direction angle follow the pseudo commands. Through simulations and experiments for the mobile robot we have confirmed that the proposed control method is able to track target even when the velocity sensors are not used at all.

DEVELOPMENT OF VEHICLE DYNAMICS MODEL FOR REAL-TIME ELECTRONIC CONTROL UNIT EVALUATION SYSTEM USING KINEMATIC AND COMPLIANCE TEST DATA

  • KIM S. S.;JUNG H. K.;SHIM J. S.;KIM C. W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.599-604
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension, that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of test and simulation results demonstrates the validity of the proposed functional suspension modeling method. The model is computationally very efficient to achieve real-time simulation on TMS 320C6711 150 MHz DSP board of HILS (hardware-in-the-loop simulation) system for ECU (electronic control unit) evaluation of semi-active suspension.

A Study on Side and Rear-Side Collision Warning System of Vehicle using Fuzzy Control Algorithms (퍼지 제어 알고리즘을 이용한 차량 후측방 충돌 경보 시스템)

  • 김병기;이화조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.939-943
    • /
    • 2004
  • The side and rear-side collision warning system using fuzzy control algorithms is discussed in this paper. Common rearside warning system has many problems. For example if target vehicle comes into the warning area, it must unconditionally warn. Drivers could be interrupted by it. To solve the problem, I divided measuring area into two sections. One section is blind area of vehicle and the other rear-side area. For blind area, obtained data was filtered inefficient warning signal by using relative velocity method. For rear-side area, a fuzzy logic algorithm is used to recognition of obstacles. According to our experiment relative velocity method and fuzzy logic algorithms were very efficient.

  • PDF

A Study on the Development of CAD/CAM System for High Precision Cam Profile CNC Grinding Machine (고 정밀 캠 프로파일 CNC 연삭기용 CAD/CAM 시스템 개발에 관한 연구)

  • Lim, Sang-Heon;Jung, Jong-Yun;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.44-50
    • /
    • 2006
  • Cam mechanisms are one of the most popular devices for generating irregular motion and are widely used in many automatic equipments, such as textile machinery, internal combustion engines and other automatic devices. In order to obtain the positive motion of follower by rotating cam, its shape should be correctly designed and manufactured. In present paper, a CAD/CAM system is developed for shape design of disk cams using relative velocity method and NC code generation using the biarc curve interpolation. And, a disk cam is successfully manufactured by the developed CAD/CAM system. Thus, it is shown that the developed CAD/CAM system can be used for high precision cam profile CNC grinding machine.

A Study on Rear Lateral Collision Warning System of Vehicle using Fuzzy Control Algorithms (퍼지 제어 알고리즘을 이용한 차량 후측방 충돌 경보 시스템)

  • Kim, Byung-Ki;Han, Seung-Chul;Yi, Hwa-Cho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.73-85
    • /
    • 2007
  • The rear lateral collision warning system using fuzzy control algorithms is discussed in this paper. Common rear lateral warning system has many problems. For example if target vehicle comes into the warning area, it must unconditionally warn. Drivers could be interrupted by it. To solve the problem, I divided measuring area into two sections. One section is blind area of vehicle and the other rear lateral area. For blind area, obtained data was filtered inefficient warning signal by using relative velocity method. For rear lateral area, a fuzzy logic algorithm is used to recognition of obstacles. According to our experiment relative velocity method and fuzzy logic algorithms were very efficient.

The Analysis of Dynamic Pressure in the Molten Flux near the Meniscus during Mold Oscillation for the Continuous Casting of Steel (강의 연속주조시 Mold Oscillation에 따른 Flux층 내의 동적 압력변화 해석)

  • Park, Tae-Ho;Kim, Ji-Hun;Choi, Joo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.26-33
    • /
    • 2004
  • The pressure of the mold flux acting on the meniscus shell was investigated through the coupling analysis of heat transfer in the mold and fluid flow in the flux caused by the mold oscillation. Finite element method was employed to solve the conservation equation associated with appropriate boundary conditions. As reported by previous workers, the axial pressure is positive on the negative strip time and negative on the positive strip time. A maximum pressure is predicted toward the top of the meniscus shell which has the thin shell arid a maximum value is in proportion to the relative mold oscillation velocity. The relative mold oscillation velocity was changed by the effect of meniscus level fluctuation. Therefore the pressure of the mold flux acting on the meniscus shell was different each cycle of the mold oscillation due to the irregularity of relative mold oscillation velocity.

Greenhouse environment analysis -Distributions and Variations of Temperature , Relative humidity Illumination , Carbon dioxide and Wind Velocity-

  • Kim, Y.B;Park, J.C.;Song, H.K.;Paek, Y.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.478-486
    • /
    • 1993
  • For satisfactory greenhouse culture, environmental factors must be kept in proper conditions. Therefore, it is important to know relations between environmental conditions and greenhouse systems. In this study, the environment variations and distributions in different types of greenhouses were measured and analyzed. The elements of environment analyzed were temperature , relative humidity, illumination, carbon dioxide and wind velocity. The analyzed greenhouse types were three different types. One of them, A type, was propagation model type by government and the other one, B type, was multiple continuous arches type which was made by farmers himself. The last one, C type, was single arch type which has no environment control system without manual temperature keeping method. The results of this study can be used for reasonable greenhouse environments managements and control.

  • PDF

Precision Control of Belt Drives using Feed Forward Compensator under Acceleration and Velocity Constraints (속도와 가속도 제한에서 전향 보상기를 이용한 벨트 구동의 정밀제어)

  • Kwon, Sei-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.713-720
    • /
    • 2009
  • Numerous applications of position controlling devices using servoing technique and transmission of energy through belt drives are practiced in the industry. Belt drive is a simple, lightweight, low cost power transmission system. Belt drives provide freedom to position the motor relative to the load and this phenomenon enables reduction of the robot arm inertia. It also facilitates quick response when employed in robotics. In this paper, precision positioning of a belt driven mechanism using a feed-forward compensator under maximum acceleration and velocity constraints is proposed. The proposed method plans the desired trajectory and modifies it to compensate delay dynamics and vibration. Being an offline method, the proposed method could be easily and effectively adopted to the existing systems without any modification of the hardware setup. The effectiveness of the proposed method is demonstrated through computer simulation and experimental results.