• 제목/요약/키워드: Relative Thickness Ratio

검색결과 157건 처리시간 0.026초

알루미늄 판재의 고 세장비 피어싱가공을 위한 작업변수의 영향 (The Influences of Process Parameters in Piercing with a High Aspect Ratio for Thick Aluminum Sheet)

  • 김종길;김종봉;김종호
    • 소성∙가공
    • /
    • 제23권1호
    • /
    • pp.23-28
    • /
    • 2014
  • The aspect ratio of a hole is defined as the ratio of the thickness to the diameter of the sheet metal. Most holes in the sheet metal industry are made by piercing. However, for thick sheets, which have an aspect ratio greater than 2, a machining process like drilling instead of piercing is usually used to make holes. In the current study, piercing, which is a shearing process, is evaluated to punch a hole with a high aspect ratio by using a newly designed die set-up. The piercing die was manufactured to prevent the punch from buckling and also to improve the alignment between the die components. An aluminum alloy sheet was selected for the experiments. The influence of several process parameters such as sheet thickness, clearance and stripping force were investigated. Experimentally, a hole with an aspect ratio of 5 was pierced. The resulting hole had a clean surface and the dimensional accuracy of pierced hole was considerably improved with decreasing clearance between punch and die. It is also shown that the larger penetration depth of the effective sheared surface can be achieved for high aspect ratio piercing relative to conventional piercing with a low aspect ratio.

Fuzzy Inference Based Design for Durability of Reinforced Concrete Structure in Chloride-Induced Corrosion Environment

  • Do Jeong-Yun;Song Hun;Soh Yang-Seob
    • 콘크리트학회논문집
    • /
    • 제17권1호
    • /
    • pp.157-166
    • /
    • 2005
  • This article involves architecting prototype-fuzzy expert system for designing the nominal cover thickness by means of fuzzy inference for quantitatively representing the environment affecting factor to reinforced concrete in chloride-induced corrosion environment. In this work, nominal cover thickness to reinforcement in concrete was determined by the sum of minimum cover thickness and tolerance to that defined from skill level, constructability and the significance of member. Several variables defining the quality of concrete and environment affecting factor (EAF) including relative humidity, temperature, cyclic wet and dry, and the distance from coast were treated as fuzzy variables. To qualify EAF the environment conditions of cycle degree of wet-dry, relative humidity, distance from coast and temperature were used as input variables. To determine the nominal cover thickness a qualified EAF, concrete grade, and water-cement ratio were used. The membership functions of each fuzzy variable were generated from the engineering knowledge and intuition based on some references as well as some international codes of practice.

Dimensional Responses of Wood Under Cyclical Changing Temperature at Constant Relative Humidity

  • Yang, Tiantian;Ma, Erni;Shi, Yi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권5호
    • /
    • pp.539-547
    • /
    • 2015
  • To investigate dimensional responses of wood under dynamic temperature condition, poplar (populous euramericana Cv.) specimens, 20 mm in radial (R) and tangential (T) directions with two thicknesses of 4 and 10 mm along the grain, were exposed to cyclic temperature changes in square wave between $25^{\circ}C$ and $40^{\circ}C$ at 60% relative humidity (RH) for three different cycling periods of 6 h, 12 h and 24 h. R and T dimensional changes measured during the cycling gave the following results: 1) Transverse dimensional changes of the specimens were generally square but at an opposite phase and lagged behind the imposed temperature changes. The phase lag was inversely correlated with cycling period, but positively related to specimen thickness, while the response amplitude was directly proportional to cycling period, but in a negative correlation with specimen thickness. 2) The specimens showed swelling hysteresis behavior. The heat shrinkage coefficient (HSC) became greater as cycling period increased or specimen thickness decreased. 3) Dimensional changes of the specimens produced deformation accumulation during repeated adsorption and desorption. The deformation accumulating ratio decreased with an increase in cycling period and specimen thickness. 4) Wood suffered 1.5 times as many dimensional changes per unit temperature variation as per unit humidity variation, and this deformation behaved even more seriously under static condition.

유전체 클래드를 갖는 원통형 유전체 공진 안테나 설계 (Design of a Cylindrical Dielectric Resonator Antenna with a Dielectric Clad)

  • 이권익;김흥수
    • 대한전자공학회논문지TC
    • /
    • 제40권4호
    • /
    • pp.54-59
    • /
    • 2003
  • 본 논문에서는 유전체 클래드를 갖는 원통형 유전체 공진 안테나를 설계하고 해석하였다. 우선 원통형 유전체의 파동 방정식으로부터 단일 원통형 유전체 공진 안테나의 설계 제원을 산출하였다. 다음으로 유전체 클래드의 영향은 클래드의 두께와 유전율 값을 이용하여 해석하였다. 그 결과 유전체 클래드의 외부 반경 대 원통형 유전체의 반경비 b/a를 1.3으로 하고 클래드의 상대 유전율 값을 내부 유전체의 1/3로 선정하였을 때, 비대역폭이 49%로 기존 안테나보다 2.3배 정도 개선되었다. 그러나 유전체 클래드의 두께와 상대 유전율 값의 변화에 따른 방사 패턴, 빔폭 및 이득 등에는 큰 영향이 없었다.

적층형 세라믹 액츄에이터의 유전 및 압전특성 (Dielectric and Piezoelectric Properties in Multilayer Ceramic Actuator)

  • 최형봉;정순종;하문수;고중혁;이대수;송재성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.615-618
    • /
    • 2004
  • The piezoelectricity and polarization of multilayer ceramic actuators, being designed to stack ceramic layer and electrode layer alternately, were investigated under a consideration of geometry, the thickness ratio of the ceramic layer to electrode layer The actuators were fabricated by tape-casting of $0.42PbTiO_3-0.38PbZrO_3-0.2Pb(Mn_{1/3}Nb_{2/3})O_3$ followed by laminating, burn-out and co-firing process. The actuators of $5\times5mm^2$ in area were formed in a way that $60{\sim}200{\mu}m$ thick ceramics were stacked 10 times alternately with $5{\mu}m$ thick electrode. Increase in polarization and electric field-displacement with increasing thickness ratio of the ceramic/electrode layer and thickness/cross section ratio were attributed to the change of $non-180^{\circ}/180^{\circ}$ domain ratio which was affected by the interlayer internal stress and Poisson ratio of ceramic layer. The piezoelectricity and actuation behaviors were found to be dependent upon the volume ratio (or thickness ratio) of ceramic layer relative to ceramic layer. Concerning with the existence of internal stress, the field-induced polarization and deformation were described in the multilayer actuator.

  • PDF

초고성능 콘크리트 바닥판을 위한 스터드 전단연결재의 정적 거동 (Static Behavior of Stud Shear Connector for UHPC Deck)

  • 이경찬;곽종원;박상혁;김지상
    • 콘크리트학회논문집
    • /
    • 제26권5호
    • /
    • pp.573-579
    • /
    • 2014
  • 합성보는 콘크리트 바닥판과 강재 거더로 이루어져 왔으나, 바닥판의 자중을 줄이면서 내구성을 향상시키고 나아가 교량의 강도 및 강성을 향상시키기 위하여 초고성능 콘크리트(UHPC)를 교량 바닥판으로 채용한 합성보가 최근에 제안되고 있다. 이 연구는 기존의 스터드 전단연결재가 UHPC 바닥판을 합성함에 있어 유효한지에 관하여 실험적으로 검토해보고자 한다. 12개의 push-out 시험체를 통하여 UHPC 바닥판에 매립된 스터드 전단연결재의 정적 강도를 평가하였으며, 실험 변수로 바닥판 두께, 스터드 높이 및 지름을 채택하여, 기존에 제한되었던 스터드 지름에 대한 높이의 비율인 형상비와 스터드 머리부 상부 콘크리트 피복두께의 제한을 완화하는 것이 가능한지에 대하여 검토하였다. 이 연구의 실험으로부터 기존 AASHTO LRFD에 제시된 정적 강도평가식을 UHPC에 매립된 스터드 전단연결재에 적용하는 것이 유효함을 확인하였으며, 4이상으로 제한된 형상비는 3.1까지 낮추어도 되며, 50 mm로 제한된 최소 피복두께도 25 mm까지 낮출수 있음을 확인하였다. 다만 Eurocode-4에 제시된 연성도 기준인 특성 상대슬립 6 mm 이상의 기준을 만족하지 못하여, UHPC에 매립된 스터드 전단연결재는 별도의 연성 보강 방안이 채택되지 않는다면 강성 전단연결재로 간주하여야 할 것이다.

양측균열인장(DE(T)) 평판의 J-적분 시험을 위한 소성 η계수 (Plastic η Eactors for J-Integral Testing of Double-Edge Cracked Tension(DE(T)) Plates)

  • 손범구;심도준;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제28권3호
    • /
    • pp.259-266
    • /
    • 2004
  • Detailed two-dimensional and three-dimensional finite element (FE) analyses of double-edge cracked tension (DE(T)) specimens are carried out to investigate the effect of the relative crack length and the thickness on experimental J testing schemes. Finite element analyses involve systematic variations of relevant parameters, such as the relative crack depth and plate width-to-thickness ratio. Furthermore, the strain hardening index of material is systematically varied, including perfectly plastic (non-hardening) cases. Based on FE results, a robust experimental J estimation scheme is proposed.

알루미늄 합금박판 비등온 성형공정의 유한요소해석 및 실험적 연구(제1부. 실험) (Finite Element Analysis and Experimental Investigation of Non-isothermal Forming Processes for Aluminum-Alloy Sheet Metals. (Part 1. Experiment))

  • 류호연;배원택;김종호;김성민;구본영;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.45-52
    • /
    • 1998
  • This study is to investigate the effects of warm deep drawing with aluminum sheets of A1050-H16 and A5052-H32 for improving deep drawability. Experiments for procucing circular cups and square cups were carried out for various working conditions, such as forming temperature and blank shape. The limit drawing ratio(LDR) of 2.63 in warm deep drawing of circular cups in case of A5052-H32 sheet, whereas LDR of A1050-H16 is 2.25, could be obtained and the former was 8 times higher than the value at room temperature. The maximum relative drawing depth for square cups of A5052-H32 material was also about 2 times deeper than the depth drawn at room temperature. The effects of blank shape, and temperature on drawability of aluminum materials as well as thickness distribution of drawn cups were examined and discussed.

  • PDF

$P-{\Delta}$ 영향을 화해를 입은 기둥의 거동 (Structural Behavior of Fire-Damaged Reinforced Columns with $P-\Delta$ Effect)

  • 이차돈;이창은
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.514-519
    • /
    • 2004
  • The paper discusses the general behavior of fire-damaged slender reinforced concrete columns on the basis of results obtained from parametric studies. Effects of slenderness ratio, concrete strength, cover thickness, reinforcement ratios, exposed time to fire, and eccentricity on the ultimate capacity of fire-damaged column are theoretically observed. With the increase of slenderness ratio, similar tendency of relative strength reduction was observed between fire-damaged columns and columns at room temperature.

  • PDF

Stress intensity factor calculation for semi-elliptical cracks on functionally graded material coated cylinders

  • Farahpour, Peyman;Babaghasabha, Vahid;Khadem, Mahdi
    • Structural Engineering and Mechanics
    • /
    • 제55권6호
    • /
    • pp.1087-1097
    • /
    • 2015
  • In this paper, the effect of functionally graded material (FGM) coatings on the fracture behavior of semi-elliptical cracks in cylinders is assessed. The objective is to calculate the stress intensity factor (SIF) of a longitudinal semi-elliptical crack on the wall of an aluminum cylinder with FGM coating. A three-dimensional finite element method (FEM) is used for constructing the mechanical models and analyzing the SIFs of cracks. The effect of many geometrical parameters such as relative depth, crack aspect ratio, FG coating thickness to liner thickness as well as the mechanical properties of the FG coating on the SIF of the cracks is discussed. For a special case, the validity of the FE model is examined. The results indicated that there is a particular crack aspect ratio in which the maximum value of SIFs changes from the deepest point to the surface point of the crack. Moreover, it was found that the SIFs decrease by increasing the thickness ratio of the cylinder. But, the cylinder length has no effect on the crack SIFs.