• Title/Summary/Keyword: Relative Thermal Control

Search Result 90, Processing Time 0.025 seconds

Indoor Environmental Efficiency Indoor Garden in Apartment House during Winter (아파트 실내정원의 겨울철 실내온열환경 조절효과)

  • Kim, Jeong-Min;Choi, Yoon-Jung
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.05a
    • /
    • pp.212-216
    • /
    • 2005
  • The purpose of this study is to make clear the indoor thermal environmental efficiency of indoor garden in apartment during winter. The questionnaire survey was carried out during the l0th${\sim}$20th of February 2004, respondents consisted of 215 residents living in a subject apartment estate. The field measurements of indoor thermal elements were carried out at A house with indoor garden and at B house without indoor garden. The measurements in two-subject houses were taken on simultaneously the 11th of February. As Results, the residents living in apartments with indoor garden show positive response on air moisture and satisfaction. The daily ranges of indoor temperature and globe temperature in the A house were narrower than the B house. The average relative humidity in the A house was higher and constant than the B house. Therefore, it was seemed that indoor environment during winter in the house with indoor garden maintained more constant or comfortable than the house without indoor garden by earning effect and humidity control effect of plants.

  • PDF

An Embedded system for real time gas monitoring using an ART2 neural network

  • Cho, Jung-Hwan;Shim, Chang-Hyun;Lee, In-Soo;Lee, Duk-Dong;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.479-482
    • /
    • 2003
  • We propose a real time gas monitoring system for classifying various gases with different concentrations. Using thermal modulation of operating temperature of two sensors, we extract patterns of gases from the voltage across the load resistance. We adopt the relative resistance as a pre-processing method and an ART2 neural network as a pattern recognition method. The proposed method has been implemented in a real time embedded system with tin oxide gas sensors, TGS 2611, 2602 and an MSP430 ultra-low power microcontroller in the test chamber.

  • PDF

A Study on the Long term Properties of Epoxy Resin (에폭시 제진의 장기적인 특성연구)

  • 한만엽;송병표;이원창;연규석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.89-94
    • /
    • 1997
  • As the reinforced concrete structures are aged, repair and rehabilitation materials and techniques have ben developed. However, most of the repair materials and methods are imported from abroad and theoretical study and repairing techniques are also not well established yet. A specification for quality of repair materials should be established, in order to secure the stability and to improve the serviceability of the repaired structures. In this study, long term properties of repair materials such as thermal expansion coefficient, hardening shrinkage, creep, and chemical resistance have been tested. The material properties shows to be affected many actors such as curing period, temperatures, relative humidity, and etc. The repair material should be selected by considering the cause and shape of the defects, mix properties, workability, quality control of construction, and etc.

  • PDF

The Finite Element Analysis and the Optimum Geometric Design of Linear Motor

  • Lee Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.73-77
    • /
    • 2005
  • Linear motor has been considered to be the most suitable electric machine for linear control with high speed and high precision. Thrust of linear motor is one of the important factors to specify motor performance. Maximum thrust can be obtained by increasing the magnitude of current in conductor and is relative to the sizes of conductor and magnet. However, the magnitude of current and the size of conductor have an effect on temperature of linear motor. Therefore, it is practically important to find optimum design that can effectively maximize thrust of linear motor within limited range of temperature. Finite element analysis was applied to calculate thrust and numerical solutions were compared with experiments. The temperature of the conductor was calculated from the experimentally determined thermal resistance. The ADPL of ANSYS was used for the optimum design process, which is commercial finite element analysis software. Design variables and constraints were chosen based on manufacturing feasibility and existing products. As a result, it is shown that temperature of linear motor plays an important role in determining optimum design.

A study on the analytical method for calculating the inside air temperature transient and energy consumption load of the building using two different controllers (두개의 제어기를 사용한 건물 내부의 온도변화와 에너지소비량을 계산하기 위한 해석적 연구)

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.1
    • /
    • pp.82-90
    • /
    • 2012
  • Four different buildings having various wall construction are analyzed for the effect of wall mass on the thermal performance and inside building air and wall temperature transient and also for calculating the energy consumption load. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equations is obtained using the Laplace transform method, Bromwich and modified Bromwich contour method. A simple dynamic model using steady state analysis as simplified methods is developed and results of energy consumption loads are compared with results obtained using the analytical solution. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from two different locations in Korea: Daegu having severe weather in summer and winter and Jeju having mild weather almost all year round. There is a significant wall mass effect on the thermal performance of a building in mild weather condition. Buildings of heavyweight construction with insulation show the highest comfort level in mild weather condition. A proportional controller provides the higher comfort level in comparison with buildings using on-off controller. The steady state analysis gives an accurate estimate of energy load for all types of construction. Finally, it appears that both mass and wall insulation are important factors in the thermal performance of buildings, but their relative merits should be decided in each building by a strict analysis of the building layout, weather conditions and site condition.

The Influence of Wearing Army Combat Uniform on the Thermal Responses in Heat Environment (서열환경하에서의 전투복착용이 체온조절에 미치는 영향)

  • Kim, Tae Gyou;Cho, Ho Hyun
    • Fashion & Textile Research Journal
    • /
    • v.16 no.1
    • /
    • pp.167-174
    • /
    • 2014
  • The physical properties of textile materials and thermal physiological responses of the human subjects were evaluated with 4 different types of the army combat uniforms including US, German, Korean and general uniforms for this study. 8 male adults were used as the human subjects and the tests were done in the environmental chamber that was $25{\pm}0.1^{\circ}C$ of temperature, $65{\pm}5%$ of relative humidity and below 0.3 m/sec of air velocity. The test protocol consisted the rest period for 20 min., the exercise period for 20 min., the rest period for 20 min., the exercise period under wind condition for 20 min., and the recovery period for 20 min. The human subjects walked with 4.5 km/hr for 10 min., ran 7.5 km/hr for 10 min. during the first exercise period and walked and ran with the same speeds under 3.5 m/sec of the air velocity that simulated outdoor condition during the second exercise period. The test results of the study were as follows; The wind condition affected the skin and microclimate temperature of the human subjects lower compared to without wind condition, but had insignificant effect on the humidity control. The low air permeability of Korean uniform caused blocking the elimination of the humidity from the body and the regulation of body temperature. However, Korean uniforms could be the excellent one with the designs considering the ventilation of the uniforms and the textile fabrics with better air permeability.

Thermal and Chemical Quenching Phenomena in a Microscale Combustor (II)- Effects of Physical and Chemical Properties of SiOx(x≤2) Plates on flame Quenching - (마이크로 연소기에서 발생하는 열 소염과 화학 소염 현상 (II)- SiOx(x≤2) 플레이트의 물리, 화학적 성질이 소염에 미치는 영향 -)

  • Kim Kyu-Tae;Lee Dae-Hoon;Kwon Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.405-412
    • /
    • 2006
  • In order to realize a stably propagating flame in a narrow channel, flame instabilities resulting from flame-wall interaction should be avoided. In particular flame quenching is a significant issue in micro combustion devices; quenching is caused either by excessive heat loss or by active radical adsorptions at the wall. In this paper, the relative significance of thermal and chemical effects on flame quenching is examined by means of quenching distance measurement. Emphasis is placed on the effects of surface defect density on flame quenching. To investigate chemical quenching phenomenon, thermally grown silicon oxide plates with well-defined defect distribution were prepared. ion implantation technique was used to control defect density, i.e. the number of oxygen vacancies. It has been found that when the surface temperature is under $300^{\circ}C$, the quenching distance is decreased on account of reduced heat loss; as the surface temperature is increased over $300^{\circ}C$, however, quenching distance is increased despite reduced heat loss effect. Such abberant behavior is caused by heterogeneous surface reactions between active radicals and surface defects. The higher defect density, the larger quenching distance. This result means that chemical quenching is governed by radical adsorption that can be parameterized by oxygen vacancy density on the surface.

Immobilization on Chitosan of a Thermophilic Trehalose Synthase from Thermus thermophilus HJ6

  • Kim, Hyun-Jung;Kim, Ae-Ran;Jeon, Sung-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.513-517
    • /
    • 2010
  • A thermostable trehalose synthase (TtTSase) from Thermus thermophilus HJ6 was immobilized on chitosan activated with glutaraldehyde. The yield of immobilization was evaluated as 39.68%. The optimum pH of the immobilized enzyme was similar to that of the free enzyme. However, the optimal temperature ranges were shifted by about $4^{\circ}C$ owing to better thermal stability after immobilization. The half-life of heat inactivation for free and immobilized enzymes was 5.7 and 6.3 days at $70^{\circ}C$, respectively, thus showing a lager thermostability of the immobilized enzyme. When tested in batch reaction, the immobilized enzyme retained its relative activity of 53% after 30 reuses of reaction within 12 days, and still retained 82% of its initial activity even after 150 days at $4^{\circ}C$. A packed-bed bioreactor with immobilized enzyme showed a maximum yield of 56% trehalose from 100 mM maltose in a continuous recycling system (bed volume: 10 ml) under conditions of pH 7.0 and $70^{\circ}C$.

Stress Analysis of the Spherical Satellite Propellant Tank With Respect to the Change of Location of the Lug and Tank Wall Thickness (지지부 위치와 벽면 두께변화에 따른 구형 인공위성 추진제 탱크의 강도해석)

  • 한근조;장우석;안성찬;심재준;전형용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.31-37
    • /
    • 1998
  • The structure of satellite consists of six parts which are control system, power system, thermal control system, remote measurement command system, propellant system and thrust system. In these parts, propellant system consists of propellant tank and thrust device. What we want to perform is optimum design to minimize the weight of propellant tank. In order to design optimal propellant tank, several parameters should be adopted from the tank geometry like the relative location of the lug and variation of the wall thickness. The analysis was executed by finite element analysis for finding optimal design parameters. The structure was divided into three parts consisting of the initial thickness zone, the transitional Bone, and the weak zone, whose effects on the pressure vessel strength was investigated. Finally the optimal lug location and the three zone thickness were obtained and the weight was compared with the uniform thickness vessel.

  • PDF

Internal Thermal Environment Uniformity Analysis of Mechanically Ventilated Broiler House (강제 환기식 육계사 내부 열환경 균일성 평가)

  • Kim, Da-in;Lee, In-bok;Lee, Sang-yeon;Park, Sejun;Kim, Jun-gyu;Cho, Jeong-hwa;Jeong, Hyo-hyeog;Kang, Sol-moe;Jeong, Deuk-young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.65-75
    • /
    • 2022
  • Livestock industry in Korea has been growing rapidly and has reached 23 trillion Korean won in 2021. This study focuses on broiler, which is one of the largest sectors in livestock industry. As the effects of climate change get more serious, primary industry such as livestock industry is fragile to climate change since it directly interacts with nature. Therefore, maintaining suitable rearing environment is important. One of the most frequently used ventilation type for controlling the rearing environment of broiler house, tunnel ventilation, causes frequent air velocity fluctuation which makes maintaining the rearing environment important. By measuring the air temperature, relative humidity and air velocity in various points inside the broiler house, the internal thermal environment uniformity was analyzed according to length, width and zone. The experimental house was found to have dead zone with high air temperature, relative humidity and low air velocity near the end of the inlet and at the end of the broiler house. By using heat stress index to analyze quantitatively, zone with highest heat stress index was found to increase by 7.55% compared to the lowest zone. As a result, to maintain uniform rearing environment inside the broiler house, different factors must be measured and analyzed and used to operate the environmental control facilities.