• Title/Summary/Keyword: Relative Slip

Search Result 160, Processing Time 0.028 seconds

An Analytical Slip Factor Based on a Relative Eddy Size Model for Centrifugal Impellers (遠心 임펠러의 相對 渦流 크기 모델에 根據한 이론적인 미끄럼 係數)

  • Paeng, Kee-Seok;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.411-418
    • /
    • 2000
  • By calculating the location and size of the relative eddy formed in the rotating impellers with the logarithmic spiral vanes, a new simple but accurate slip factor is analytically derived. The proposed slip factor depends on only one parameter that is a function of the number of vanes and the vane exit angle. Predicted slip factor for various cases are compared with those estimated by a number of previous slip factors as well as a recent theoretical calculation by Visser et al. ( JFM, Vol. 268, pp. 107-141, 1994). It is found that the present slip factor yields almost similar results to Wiesner's which has been empirically formulated based on the theoretical calculation of Busemann.

Vehicle Longitudinal Brake Control with Wheel Slip and Antilock Control (바퀴 슬립과 잠김 방지 제어를 고려한 차량의 종렬 브레이크 제어)

  • Liang Hong;Choi Yong-Ho;Chong Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.502-509
    • /
    • 2005
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. The simulation results indicate that the velocity and spacing errors were slightly larger than those obtained when the wheel slip effect was not considered, that the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and that the limit for the antilock control under non-constant adhesion road conditions was determined by the minimum value of the equivalent adhesion coefficient.

Variable Parameter Sliding Controller Design for Vehicle Brake with Wheel Slip

  • Liang, Hong;Chong, Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1801-1812
    • /
    • 2006
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, pushrod force as the end control parameter, and an antilock sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. Simulation results indicate that the velocity and spacing errors were slightly larger than the results that without considering wheel slip effect, the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and the limit for the antilock control on non-constant adhesion road condition was determined by the minimum of the equivalent adhesion coefficient.

RESEARCH FOR BOND STRESS-RELATIVE SLIP RELATIONSHIP (부착응력-상대슬립 관계에 대한 연구)

  • 고원준;김진호;서봉원;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.221-226
    • /
    • 2002
  • This paper deals with the estimation of the bond stress based on experimental data that were tensed by axial force on both sides. It is certificated that the concrete stress condition clearly affects the bond-slip relationship. The proposed method utilizes the conventional bond-slip theories as well as the characteristics of deformed reinforcement and concrete cross-sectional area. An analytical equation for the estimation of the bond stress is formulated as the function of non-dimensional factors (e.g. bond stress, relative slip, etc.). The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data of Ikki (1996, 1999) and the representative bond stress equations of Shima (1987). The analytical results presented in this paper indicate that the proposed method can be effectively estimated the bond stress-relative slip relationship.

  • PDF

Behavior analysis on stick-slip of hydraulic telescopic boom (유압 텔레스코픽 붐의 스틱-슬립에 대한 거동해석)

  • Baek, Il-Hyun;Jung, Jae-Youn;Kim, Shin
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.296-303
    • /
    • 2002
  • Tribology, in other words, interacting surfaces in relative motion, is essential in life. The relative motion on surfaces may cause some problems with heat, vibration, noise, and so on. Unwanted vibrations by friction, which may arise during the operation of machines, are costly in terms of reduction of performance and service life. All these phenomena inolve stick-slip. The telescopic boom operations involves stick-slip oscillations like slideways. Unwanted stick-slip oscillations on telescopic boom operations cannot achieve smooth sliding and many developers of that machine makes a lot of effort to remove or reduce it. So this paper presents stick-slip oscillation with pressure of the hydraulic cylinder which drives booms, and attempts a theoretical approach for the numerical analysis for its stick-slip condition.

  • PDF

Study on push-out test and bond stress-slip relationship of circular concrete filled steel tube

  • Yin, Xiaowei;Lu, Xilin
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.317-329
    • /
    • 2010
  • According to the results of 9 circular concrete filled steel tube (CFT) push-out tests, a new theoretical model for average bond stress versus free end slip curve is proposed. The relationship between verage bond stress and free end slip is obtained considering some varying influential parameters such as slenderness ratio and diameter-to-thickness ratio. Based on measured steel tube strain and relative slip at different longitudinal positions, the distribution of bond stress and relative slip along the length of steel tube is obtained. An equation for predicting the varying bond-slip relationship along longitudinal length and a position function reflecting the variation are proposed. The presented method can be used in the application of finite element method to analyze the behavior of CFT structures.

Development of Polymer Slip Tactile Sensor Using Relative Displacement of Separation Layer (분리층의 상대 변위를 이용한 고분자 미끄럼 촉각 센서 개발)

  • Kim, Sung-Joon;Choi, Jae-Young;Moon, Hyung-Pil;Choi, Hyouk-Ryeol;Koo, Ja-Choon
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.2
    • /
    • pp.100-107
    • /
    • 2016
  • To realize a robot hand interacting like a human hand, there are many tactile sensors sensing normal force, shear force, torque, shape, roughness and temperature. This sensing signal is essential to manipulate object accurately with robot hand. In particular, slip sensors make manipulation more accurate and breakless to object. Up to now several slip sensors were developed and applied to robot hand. Many of them used complicate algorithm and signal processing with vibration data. In this paper, we developed novel principle slip sensor using separation layer. These two layers are moved from each other when slip occur. Developed sensor can sense slip signal by measuring this relative displacement between two layers. Also our principle makes slip signal decoupled from normal force and shear force without other sensors. The sensor was fabricated using the NBR(acrylo-nitrile butadiene rubber) and the Ecoflex as substrate and a paper as dielectric. To verify our sensor, slip experiment and normal force decoupling test were conducted.

Hardening slip model for reinforcing steel bars

  • Braga, Franco;Caprili, Silvia;Gigliotti, Rosario;Salvatore, Walter
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.503-539
    • /
    • 2015
  • A new constitutive model for the representation of the seismic behaviour of steel bars including hardening phenomena is presented. The model takes into account relative slip between bars and concrete, necessary for the estimation of the structural behaviour of r.c. elements and of the level of strain induced by earthquakes on bars. The present work provides the analytical formulation of the post-yielding behaviour of reinforcements, resulting in a continuous axial stress-slip relationship to be implemented in engineering software. The efficacy of the model is proved through the application to a cantilever column, for whose bars the constitutive law is derived.

A Study of Standardization of Floor Slip Test method using O-Y·PSM (경사인장형 바닥 미끄럼 시험방법의 표준화에 관한 연구)

  • Shin, Yun-Ho;Kang, Yong-Hak;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.95-96
    • /
    • 2016
  • The floor slip test method using O-Y·PSM was developed based on the risk assessment and sense of slip by the users implementing actions such as changing walking direction on a floor. This test method is regulated under the Korea Industrial Standard KS M 3510, and in the Korea Industrial Standard KS F 3230, the article of KS M 3510 is cited. Yet, in the standard, the surface condition of test or slip adjustment method is merely mentioned or difficult to be found, and thus it creates confusion in floor slip test using O-Y·PSM. Therefore, this study is to provide the useful data to revise the relative standard through the standardization study including various surface conditions of sample and slip adjustment method used in floor slip test method using O-Y·PSM.

  • PDF

IMPLEMENTATION OF VELOCITY SLIP MODELS IN A FINITE ELEMENT NUMERICAL CODE FOR MICROSCALE FLUID SIMULATIONS (속도 슬립모델 적용을 통한 마이크로 유체 시뮬레이션용 FEM 수치 코드 개발)

  • Hoang, A.D.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.46-51
    • /
    • 2009
  • The slip effect from the molecular interaction between fluid particles and solid surface atoms plays a key role in microscale fluid transport and heat transfer since the relative importance of surface forces increases as the size of the system decreases to the microscale. There exist two models to describe the slip effect: the Maxwell slip model in which the slip correction is made on the basis of the degree of shear stress near the wall surface and the Langmuir slip model based on a theory of adsorption of gases on solids. In this study, as the first step towards developing a general purpose numerical code of the compressible Navier-Stokes equations for computational simulations of microscale fluid flow and heat transfer, two slip models are implemented into a finite element numerical code of a simplified equation. In addition, a pressure-driven gas flow in a microchannel is investigated by the numerical code in order to validate numerical results.