• Title/Summary/Keyword: Relative Root Length

Search Result 91, Processing Time 0.027 seconds

A Retrospective Study of Sintered Porous-surfaced Dental Implants in Restoring the Edentulous Posterior Mandible: Up to Eight Years of Functioning (하악 구치부에 식립한 sintered porous surfaced implants의 후향적 다기관 연구)

  • Kim, Woo-Sung;An, Kyung-Mi;Sohn, Dong-Seok;Jung, Heui-Seung;Shin, Im-Hee
    • The Journal of the Korean dental association
    • /
    • v.47 no.12
    • /
    • pp.823-829
    • /
    • 2009
  • Purpose : The aim of this study was to evaluate the survival rate of sintered porous-surfaced implants placed in the edentulous posterior mandibles, in relation to implant length and diameter, crown-to-implant ratio, and types of prostheses, for a maximum of eight years of functioning. Material and Methods : The study group consisted of 43 partially edentulous patients who visited Catholic University Hospital of Daegu and one private dental clinic. A total of 122 sintered porous-surfaced implants n $Endopore^{(R)}$ (Inn ova Life Sciences, Toronto, Ontario, Canada) -- were placed in the edentulous posterior mandibles, Two diameter sizes (4.1 mm and 5.0 mm) and four lengths (5.0 mm, 7.0 mm, 9.0 mm, and 12.0 mm) were used. One hundred and three implants were splinted and 21 implants were nonsplinted. The survival rates of the implants in relation to length, diameter, crown-to-implant ratio, and types of prostheses were investigated. Statistical data were analyzed using SPSS Win.Ver 14.0 software with the Chi-square test. Results : The survival rate of the 4.1mm diameter implants was 100% and 91.2% for the 5.0mm diameter implants. The survival rates of the implants of differing diameters were found to be statistically different (p=0.005). The survival rates of both the 5.0mm and 7.0 mm length implants were 100%. The survival rate of the 9.0mm length implants was 97.9% and for the 12.0mm length implants was 95.1%. There was no statistical difference in survival rates for the differing lengths of implants. Of the 103 prostheses that were splinted, the survival rate was 98.0%. The survival rate of splinted prostheses was higher than that of the non-splinted prostheses, but was found to be not statistically different. There were no failed cases when the crown-to-implant ratio was under 1.0. When the crown-to-implant ratio was between 1.0 and 1.5, the failure rate of the implants was 6.7%. No failure was recorded with the ratio range of 1.5 to 2.0. Relative to the crown-to-implant ratio of 1.0, the failure rates were statistically different (p=0.048). Discussion and Conclusion : The cumulative survival rate of the porous-surfaced implants placed in the edentulous posterior mandibles was 97.5%. Short porous-surfaced implants showed satisfactory results after a maximum of nine years of functioning in the edentulous posterior mandibles.

  • PDF

Automatic Calibration of SWAT Model Using LH-OAT Sensitivity Analysis and SCE-UA Optimization Method (LH-OAT 민감도 분석과 SCE-UA 최적화 방법을 이용한 SWAT 모형의 자동보정)

  • Lee Do-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.8 s.169
    • /
    • pp.677-690
    • /
    • 2006
  • The LH-OAT (Latin Hypercube One factor At a Time) method for sensitivity analysis and SCE-UA (Shuffled Complex Evolution at University of Arizona) optimization method were applied for the automatic calibration of SWAT model in Bocheong-cheon watershed. The LH-OAT method which combines the advantages of global and local sensitivity analysis effectively identified the sensitivity ranking for the parameters of SWAT model over feasible parameter space. Use of this information allows us to select the calibrated parameters for the automatic calibration process. The performance of the automatic calibration of SWAT model using SCE-UA method depends on the length of calibration period, the number of calibrated parameters, and the selection of statistical error criteria. The performance of SWAT model in terms of RMSE (Root Mean Square Error), NSEF (Nash-Sutcliffe Model Efficiency), RMAE (Relative Mean Absolute Error), and NMSE (Normalized Mean Square Error) becomes better as the calibration period and the number of parameters defined in the automatic calibration process increase. However, NAE (Normalized Average Error) and SDR (Standard Deviation Ratio) were not improved although the calibration period and the number of calibrated parameters are increased. The result suggests that there are complex interactions among the calibration data, the calibrated parameters, and the model error criteria and a need for further study to understand these complex interactions at various representative watersheds.

Optimum Irrigation Interval for the Growth of Phalaenopsis Hybrid Seedling in the Aeroponic System (분무경 시스템에서 팔레놉시스 유묘 생육에 적합한 분무간격)

  • Lee, Dong-Soo;Kwon, Oh-Keun;Lee, Yong-Beom;Yae, Byeong-Woo;Lee, Young-Ran
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.234-239
    • /
    • 2010
  • The irrigation interval and time for the supply of nutrient and water to the plant is important in the aeroponic system. This study was conducted to investigate the effect of irrigation interval on the growth of Phalaenopsis hybrid seedlings in the aeroponic system. Young bare-root plants (four leaves, 16 g in fresh weight) were used for this experiment. The composition of nutrient solution was, in $me{\cdot}L^{-1}$, 9 N, 3 P, 4 K, 4 Ca and 2 Mg. The electrical conductivity (EC) and pH of nutrient solution used was $1.2\;dS{\cdot}m^{-1}$ and 5.8, respectively. Irrigation intervals were 10, 20, 30, 40, and 50 minute and each irrigation time was 10 minute. The total fresh and dry weight, the number of branched roots, and relative growth rate at the 20 and 30 min. was greater than 10, 40, 50 min. interval. Especially, the fresh weight of roots at 30 min. interval was the highest. Leaf length was the highest at 30 min. interval but there was no difference in leaf width. The amount of water consumed for a month was 0.71 L per plant and it was reduced with increasing irrigation interval. There was no difference in the amount of consumed mineral contents for 15 days except for potassium. Potassium absorbed was the highest at 30 min. irrigation interval. As a result, the optimum irrigation interval was 30 min for the production of Phalaenopsis hybrid seedlings in the aeroponic system.

Effect of Salinity Stress on Growth, Yield, and Proline Accumulation of Cultivated Potatoes (Solanum tuberosum L.) (염 스트레스에 따른 감자 품종 (Solanum tuberosum L.) 간 생육, 수량 및 proline 함량 변이)

  • Im, Ju Sung;Cho, Ji Hong;Cho, Kwang Soo;Chang, Dong Chil;Jin, Yong Ik;Yu, Hong Seob;Kim, Wha Yeong
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.818-829
    • /
    • 2016
  • This study evaluated the responses of 18 potato cultivars to three levels of salinity stress (electrical conductivity, EC: 1.0, 4.0, and $8.0dS{\cdot}m^{-1}$). Stem, leaf, root, chlorophyll, tuber yield, and proline content were investigated and statistically analyzed using analysis of variance (ANOVA) and correlations. Stem number and stem diameter were not affected by salinity, but stem length and aerial weight showed highly significant responses to salinity. Aerial weight decreased with increasing salinity levels in most cultivars, while it increased in some the cultivars 'Daejima', 'Goun', 'Haryeong', and 'LT-8'. Leaf number, leaf area index, and leaf weight were most significantly affected by salinity and the cultivar ${\times}$ salinity interaction. Root length, root weight, total chlorophyll and chlorophyll a were affected by salinity, but not by the cultivar ${\times}$ salinity interaction. The opposite trend was shown in chlorophyll b. Although there was great variability among cultivars, tuber yield decreased in all cultivars, and was most significantly influenced by salinity and the cultivar ${\times}$ salinity interaction. 'Superior', 'Kroda', 'Romana', and 'Duback' gave better tuber yields under salinity at EC 4.0 and $8.0dS{\cdot}m^{-1}$ than the cultivars with better aerial weights. Proline content was increased by salinity in all cultivars, and was more remarkable in the cultivars with better aerial weights than in cultivars such as 'Superior' and 'Kroda' with better tuber yields. Leaf number, leaf area index, leaf weight, and root length parameters were considered to be useful criteria in the evaluation of salt tolerance because of their high positive correlation with tuber yield; however, given its negative correlation with tuber yield under high salinity, proline content was not. Salinity tolerances varied greatly among potato cultivars. The low correlation between growth and yields of aerial parts under high salinity suggests that, in commercial agriculture, it might be more practical to compare relative yields to controls. Additionally, 'Superior', 'Kroda', 'Romana', and 'Duback' might be very useful cultivars to use in breeding programs to develop salinity-tolerant potatoes, as well as for sustainable potato production in saline areas.

The Growth and Physiological Responses of Cacalia firma Seedlings by Shading Conditions in Forest Farming (임간재배 시 병풍쌈 유묘의 차광처리별 생장 및 생리 반응)

  • Yoon, Jun Hyuck;Jeon, Kwon Seok;Song, Ki Seon;Park, Yong Bae;Moon, Yong Sun;Lee, Do Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.65-71
    • /
    • 2014
  • Cacalia firma is a perennial plant in Asteraceae, Parasenecio that distributed in Korea, China, and Japan. As dietary style changes for well-being life, consumer's demand of functional food and organic vegetables is getting increased. This study was conducted to investigate the optimum light conditions of P. firmus in forest farming. One year old seedlings were grown under four different light conditions 10%, 20%, 30%, and 50% of sunlight by shading (equals 50%, 30%, 20%, and 10% relative brightness respectively) and non-treated control under full sunlight. They were analyzed for early growth and physiological response. Seedlings grown under 75% shading showed similar height, root growth, and leaf water content to control. However, their leaf length, width, and total leaf area were increased, which caused increased leaf dry weight and total dry weight. Especially, seedlings under 95% shading showed 40% increase in height and more leaf growth and leaf water content, although they had shorter main root length and root collar diameter than control. In addition specific leaf area (SLA) and leaf area ratio (LAR) were higher than control and indicated that they were statistically significant difference from control. Higher SLA refers thinner leaf thickness, higher LAR means larger leaf area. The results indicate seedlings under 95% shading have higher water content, thinner leaf, and wider lightinterception areas. It is plausible that P. firmus is active in chlorophyll activities and carbon dioxide assimilation at even lower light conditions. These results suggest that the optimum light level of P. firmus for artificial cultivation in forest farming ranges from 75~95% shading (20%-10% of relative brightness). When salability as 'sanchae' (wild edible greens) is considered, P. firmus could be cultivated under 75% shading in forest farming and expected to have better taste and higher yield. We suggest these results as basic data of P. firmus for possible forest farming.

Height Suppression of Cucumber and Tomato Plug Seedlings Using of Brushing Stimulus (브러싱 자극을 이용한 오이와 토마토 공정묘의 초장 억제)

  • Kim, Hyeon Min;Lee, Hye Ri;Jeong, Hyeon Woo;Kim, Hye Min;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.285-293
    • /
    • 2018
  • This study aimed to evaluate the effect of height suppression of cucumber and tomato plug seedlings as affected by mechanical stimulus using brushing as environment-friendly method. Cucumber (Cucumis sativus L. 'Joeunbaekdadagi') and tomato (Solanum lycopersicum L. 'Mini Chal') seeds were sown in 40-cell plug trays ($54{\times}27.5{\times}5cm$) filled with growing medium on Oct. 9, 2017. The cultivation environment in a venlo-type glasshouse was maintained as cultivation temperature range of $15-25^{\circ}C$ and the relative humidity of $50{\pm}10%$. Nontreatment and diniconazole ($7.5mg{\cdot}L^{-1}$) application at 15 days after sowing were used as the control. In addition, brushing treatments in cucumber and tomato were applied interval of 2, 4 or 6 hrs for 15 and 20 days, respectively. Plant height, hypocotyl length, and internode length were inhibited for cucumber and tomato in the diniconazole treatment than in the control. The leaf size was reduced, both cucumber and tomato, while the SPAD increased under the diniconazole treatment. However, stem diameter of cucumber was the thickest in the 2 hrs brushing interval treatment. Fresh weights of shoot and root were the significantly lowest in the diniconazole treatment. Application of brushing improved seedlings quality by promoting dry weights of shoot and root, and compactness of tomato seedlings. The chlorophyll fluorescence of tomato seedlings drastically decreased with 2 hrs treatment, indicating that mechanical stress by brushing treatment. The relative growth rate of tomato seedlings was significantly lower in the diniconazole treatment, but cucumber seedlings were not significantly different in all treatments. As a results, height suppression of cucumber and tomato seedlings was best achievement in the diniconazole treatment by the chemical as growth regulator. In an environment-friendly point of view, however, it is considered that 2 hrs brushing interval treatment can be the applicability for replacing the chemical methods in plug seedling growth of cucumber and tomato.

Ginsenoside Production and Morphological Characterization of Wild Ginseng (Panax ginseng Meyer) Mutant Lines Induced by γ-irradiation (60Co) of Adventitious Roots

  • Zhang, Jun-Ying;Bae, Tae-Woong;Boo, Kyung-Hwan;Sun, Hyeon-Jin;Song, In-Ja;Pham, Chi-Hoa;Ganesan, Markkandan;Yang, Dae-Hwa;Kang, Hong-Gyu;Ko, Suk-Min;Riu, Key-Zung;Lim, Pyung-Ok;Lee, Hyo-Yeon
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.283-293
    • /
    • 2011
  • With the purpose of improving ginsenoside content in adventitious root cultures of Korean wild ginseng (Panax ginseng Meyer), the roots were treated with different dosages of ${\gamma}$-ray (5, 10, 25, 50, 75, 100, and 200 Gy). The growth of adventitious roots was inhibited at over 100 Gy. The irradiated adventitious roots showed significant variation in the morphological parameters and crude saponin content at 50 to100 Gy. Therefore, four mutant cell lines out of the propagation of 35 cell lines treated with 50 Gy and 100 Gy were selected on the basis of phenotypic morphology and crude saponin contents relative to the wild type control. The contents of 7 major ginsenosides ($Rg_1$, Re, $Rb_1$, $Rb_2$, Rc, Rf, and Rd) were determined for cell lines 1 and 3 from 100 Gy and lines 2 and 4 from 50 Gy treatments. Cell line 2 showed more secondary roots, longer length and superior growth rate than the root controls in flasks and bioreactors. Cell line 1 showed larger average diameter and the growth rate in the bioreactor was comparable with that of the control but greater in the flask cultured roots. Cell lines 1 and 2, especially the former, showed much more ginsenoside contents than the control in flasks and bioreactors. Therefore, we chose cell line 1 for further study of ginsenoside contents. The crude saponin content of line 1 in flask and bioreactor cultures increased by 1.4 and 1.8-fold, respectively, compared to the control. Total contents of 7 ginsenoside types ($Rg_1$, Re, $Rb_1$, $Rb_2$, Rc, Rf, and Rd) increased by 1.8 and 2.3-fold, respectively compared to the control. Crude saponin and ginsenoside contents in the bioreactor culture increased by about 1.4-fold compared to that the flask culture.

An Optimum Slanting Angle in Reticulated Root Piles Installation under Compressive and Uplift Loads (압축 및 인발하중을 받는 그물식 뿌리말뚝의 최적 타설경사각)

  • 이승현;김명보
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-84
    • /
    • 1996
  • In order to investigate the influence of slanting angle of reticulated root piles(RRP) on their bearing capacities, model tests of compressive and uplift loads on RRP with different slanting angles, which were installed in sandy soils with a relative density of 47%, were carried out. Each pile which is made of a steel bar of 5mm in diameter and 300mm in length, is coated with sand to be 6.5mm in diameter. One set of RRP consists of 8 piles which are installed in circular patterns forming two concentric circles, each of which has 4 piles. Slanting angles of RRP for load tests are 0$^{\circ}$, 5$^{\circ}$, 10$^{\circ}$, 15$^{\circ}$, 20$^{\circ}$, and 25$^{\circ}$. In addition, compressive load tests on circular footing whose diameter is the same as the outer circle of RRP were carried out. Test results show that maximum load bearing capacities of RRP by regression analysis are obtained at about 12$^{\circ}$ and 13$^{\circ}$ of slanting angles for compressive and uplift load tests, respectively. Maximum compressive bearing capacity is estimated to be 13oA bigger than that of the vertical RRP and 95% bigger than that of surface footing. Maximum uplift capacity is estimated to be 21% bigger than that of the vertical RRP. And it can be appreciated that increasing the slanting angle makes the load -Settlement behavior more ductile.

  • PDF

Effects of Some Environmental Factors on Japanese Yew (Taxus cuspidata Sieb. et Zucc.) (몇 발근환경인자(發根環境因子)가 주목삽수(揷穗) 발근(發根)에 미치는 효과(効果))

  • Kim, Chang Ho;Nam, Jung Chil
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.1-6
    • /
    • 1985
  • The purpose of this experiment lies in finding the most appropriate cutting condition of Taxus cuspidata Sieb. et Zucc. which has been considered valuable tree species in gardening. Statistical analysis was focused on the comparison of the average ratios of rooting between greenhouses and fields, based on the observation rooted autogenis. To conduct this survey, hardwood cutting of Taxus cuspidata Sieb. et Zucc. were performed at both places of experiment above on April 20, 1982 with rooting results calculated on October 31, 1982. After formation of cuttings, it was soaked in IBA 200 ppm for 12 hours and than put in a bed. A summary of the result is presented as follows; 1) Cutting at the greenhouse showed higher average rate of rooting than at fields. Same tendency was found regardless of the differences in treatment. 2) It was clear that IBA-treatment contributed remarkably to causing higher average rooting rate. As an evidence, when twenty centimeter cuttings were inserted sandy media, IBA-treated area resulted in eighty six percent of average rooting rate, as compared with only twenty three percent in nontreatment case. In case of field cutting, IBA-treatment brought about fifty three percent of rooting in comparison with eleven percent nontreatment. 3) When sandy soil, loam and brown soil were separately used as cutting media, the highest rooting rate was found in case of sandy soil, without any difference between the two experimental places above. 4) As a result of the analysis to seek the impact of the length of cuttings on rooting, the range of length form fifteen to twenty centimeter was apparently most appropriate. It was also found that the rate of rooting declined beyond twenty five centimeter. 5) Two kinds of rooting pattern were observed. One was the case that callus cell lump was created on the lower cut side of cuttings. Importantly, root radical were formed inside the lump to influence the germination of root system. The other relates to the case that adventitious root which look like lateral roots appeared at the stem region. In abstract, first, sandy soil was effectively recommended in case of hardwood cutting in April. Second, the most appropriate length of cuttings ranged between fifteen and twenty centimeters. Third, high density IBA treatment was clearly effective. Forth, for proper environmental management, both pre-disinfection of sail by sterilizer and maintenance of high relative humidity were essentially required.

  • PDF

Effects of the design variables and their constraints on the stage performance of an axial flow turbine (축류 터빈의 설계 변수 및 설계 변수의 제한조건이 성능에 미치는 영향)

  • 박호동;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2109-2124
    • /
    • 1991
  • A simulation program is developed to analyse the performance of an axial flow turbine stage based on the meanline prediction method. The gradient projection method is utilized to minimize the aerodynamic losses under the specified constraints on such as flow coefficient, total pressure ratio, stage power and blade loading coefficient. After obtaining the optimum point for minimizing the stage loss, a sensitivity analysis is carried out ground the optimum point to find the effects of the design variables and the design constraints on the stage performance. The result of the senitivity analysis under a constant blade loading coefficient shows that the total loss is more sensitive to the mean diameter, the absolute flow angle at nozzle outlet, the relative flow angle at rotor outlet and the axial mean velocity compared to the chords and the pitches. Moreover, the design constraints on the degree of reaction at root and the blade length-to-diameter ratio are found to be most influencial on the maximization of the overall aerodynamic efficiency.