• Title/Summary/Keyword: Relative Position

Search Result 1,253, Processing Time 0.028 seconds

Compensation Method of Position Signal Error with Misaligned Hall-Effect Sensors of BLDC Motor

  • Park, Joon Sung;Choi, Jun-Hyuk;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.889-897
    • /
    • 2016
  • This paper presents an improved approach for compensating rotor position signal displacement in brushless DC (BLDC) motors with misaligned hall-effect sensors. Typically, the hall-effect sensors in BLDC motors are located in each phase and positioned exactly 120 electrical degrees apart. However, limitations in mechanical tolerances make it difficult to place hall-effect sensors at the correct location. In this paper, a position error compensator to counteract the hall-effect sensor positioning error is proposed. The proposed position error compensator uses least squares error analysis to adjust the relative position error and back-EMF information to reduce the absolute offset error. The effectiveness of the proposed approach is verified through several experiments.

Mathematical Analysis and Simulation Based Survey on Initial Pole Position Estimation of Surface Permanent Magnet Synchronous Motor

  • Kim, Tae-Woong;Wheeler, Patrick;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.499-506
    • /
    • 2009
  • In this paper, the initial pole-position estimation of a surface (non-salient) permanent magnet synchronous motor is mathematically analyzed and surveyed on the basis of simulation analysis, and developed for accurate servo motor drive. This algorithm is well carried out under the full closed-loop position control without any pole sensors and is completely insensitive to any motor parameters. This estimation is based on the principle that the initial pole-position is simply calculated by the reverse trigonometric function using the two feedback currents in the full closed-loop position control. The proposed algorithm consists of the predefined reference position profile, the information of feedback currents, speed, and relative position, and the reverse trigonometric function for the initial-pole position estimation. Comparing with the existing researches, the mathematical analysis is introduced to get a more accurate initial pole-position of the surface permanent magnet motor under the closed-loop position control. It is found that the proposed algorithm can be easily applied in servo drive applications because it satisfies the following user's specifications; accuracy and moving distance.

Effects of Position of Auxiliary Probe on Ground Resistance Measurement Using Fall-of-Potential Method

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Lee, Ki-Yeon;Kim, Hyang-Kon
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, the effects of the position and the angle of the potential probes on the measurements of the ground resistance using the fall-of-potential method are described and the testing techniques for minimizing the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position and angle of auxiliary probes. In order to analyze the relative error in the measured value of the ground resistance due to the position of the potential probe, the ground resistance was measured for the case in which the distance of the current probe was fixed at 50[m] and the distance of the potential probe was located from 10[m] to 50[m]. Also, the potential probe was located in turn at $30[^{\circ}]$, $45[^{\circ}]$, $60[^{\circ}]$, $90[^{\circ}]$, and $180[^{\circ}]$. As a consequence, relative error decreased with increasing distance of the potential probe and decreasing angle between the current probe and potential probe. The results could help to determine the position of the potential probe during the ground resistance measurement.

Multi-sensor Fusion based Autonomous Return of SUGV (다중센서 융합기반 소형로봇 자율복귀에 대한 연구)

  • Choi, Ji-Hoon;Kang, Sin-Cheon;Kim, Jun;Shim, Sung-Dae;Jee, Tae-Yong;Song, Jae-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.250-256
    • /
    • 2012
  • Unmanned ground vehicles may be operated by remote control unit through the wireless communication or autonomously. However, the autonomous technology is still challenging and not perfectly developed. For some reason or other, the wireless communication is not always available. If wireless communication is abruptly disconnected, the UGV will be nothing but a lump of junk. What was worse, the UGV can be captured by enemy. This paper suggests a method, autonomous return technology with which the UGV can autonomously go back to a safer position along the reverse path. The suggested autonomous return technology for UGV is based on multi-correlated information based DB creation and matching. While SUGV moves by remote-control, the multi-correlated information based DB is created with the multi-sensor information; the absolute position of the trajectory is stored in DB if GPS is available and the hybrid MAP based on the fusion of VISION and LADAR is stored with the corresponding relative position if GPS is unavailable. In multi-correlated information based autonomous return, SUGV returns autonomously based on DB; SUGV returns along the trajectory based on GPS-based absolute position if GPS is available. Otherwise, the current position of SUGV is first estimated by the relative position using multi-sensor fusion followed by the matching between the query and DB. Then, the return path is created in MAP and SUGV returns automatically based on the MAP. Experimental results on the pre-built trajectory show the possibility of the successful autonomous return.

Position-Attitude Coupling Motion Using Dual Quaternion in Spacecraft Proximity Operation (듀얼 쿼터니언을 이용한 인공위성 근접운용에서의 위치-자세 결합운동 연구)

  • Na, Yunju;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.795-802
    • /
    • 2019
  • This paper deals with position-attitude coupling motion during spacecraft relative operation, and suggests dual quaternion-based kinematics for the problem. The position-attitude coupling motion can occur when the target point is located at an arbitrary point on the satellite body, not the center of mass. This is especially apparent in close proximity operation case. The dual quaternion-based kinematics directly reflects the angular velocity state, so that the coupling motion in which the change of attitude affects the position can be concisely defined. In this study, a new dual quaternion-based kinematics is presented along with a conventional approach to solve the coupling problem. Numerical simulations show that the position error for the target point is generated by the coupling motion, and verify that the dual quaternion-based kinematics can solve this problem.

RELATIVE SIGNAL INTENSITY OF RETRODISCAL TISSUE IN MRI, AND SYNOVIAL FLUID CONCENTRATION OF INTERLEUKIN-6, MMP-2 AND MMP-9 IN TEMPOROMANDIBULAR JOINT DISORDER (악관절질환에서 MRI 상 관절원판 후조직의 상대적 신호강도와 관절액의 Interleukin-6, MMP-2 및 MMP-9 농도)

  • Lee, Sang-Hwa;Choie, Mok-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.5
    • /
    • pp.399-408
    • /
    • 2005
  • In the progression of the Temporomandibular Joint Disorder(TMD), not only deformation and perforation of disc occur. But also fibrotic adhesion and inflammatory changes to the retrodiscal tissue can be seen in addition to the condylar degenerative change (e.g. osteoarthritis). However, the correct diagnosis,?planning for appropriate treatment, and prediction of prognosis are limited, because there are no means to stage the progression of the disorder. In this study relative signal intensity of retrodiscal tissue in MRI and the synovial fluid concentration of matrix metalloproteinase-2 (MMP-2), MMP-9, and Interleukin-6(IL-6) in the 23 temporomandibular joints(TMJ), from 17 patients with TMD were evaluated as a possible diagnostic marker. The relative signal intensity of retrodiscal tissue was referenced to brain gray matter with same region of interest(ROI) size. The concentrations of MMP-2, MMP-9, and IL-6 were evaluated by Enzyme Linked Immunosorbent Assay (ELISA). The collected data were compared with condylar degenerative change, joint effusion and disc position observed in MRI. The relative signal intensity of the retrodiscal tissue was increased significantly when degenerative changes were present. In addition, there was significantly high signal intensity in the presence of a disc displaced without reduction. The concentration of IL-6 was significantly increased when condylar degenerative change was no observed. And there were no changes in the levels of IL-6 according to disc position and joint effusion measurement. Moreover, there were no significant relevance between the concentration of total MMP-2 and active MMP-9 in synovial fluid, relative to degenerative changes in the mandibular condyle, to joint effusion, and to disc position observed on MRI images. In conclusion, the relative signal intensity of the retrodiscal tissue can be regarded as a mean of diagnosing the procession of TMD in a non-invasive manner. But more additional studies are required for the levels of MMP-2. MMP-9, and IL-6 to determine their potentials as a diagnostic marker for TMD.

Modeling, Dynamics and Control of Spacecraft Relative Motion in a Perturbed Keplerian Orbit

  • Okasha, Mohamed;Newman, Brett
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.77-88
    • /
    • 2015
  • The dynamics of relative motion in a perturbed orbital environment are exploited based on Gauss' and Cowell's variational equations. The inertial coordinate frame and relative coordinate frame (Hill frame) are used, and a linear high fidelity model is developed to describe the relative motion. This model takes into account the primary gravitational and atmospheric drag perturbations. Then, this model is used in the design of a navigation, guidance, and control system of a chaser vehicle to approach towards and to depart from a target vehicle in proximity operations. Relative navigation uses an extended Kalman filter based on this relative model to estimate the relative position/velocity of the chaser vehicle with respect to the target vehicle. This filter uses the range and angle measurements of the target relative to the chaser from a simulated LIDAR system. The corresponding measurement models, process noise matrix, and other filter parameters are provided. Numerical simulations are performed to assess the precision of this model with respect to the full nonlinear model. The analyses include the navigation errors and trajectory dispersions.

A Study on the Vibrational Reduction Evaluation and the Relative Displacement in the External Vibration of Precision Measuring System (초정밀 측정/가공 장비의 외부진동에 대한 상대변위의 추출과 진동성능 평가에 관한 연구)

  • 전종균;엄호성;김강부;원영재
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.65-72
    • /
    • 2002
  • Generally, there are laser operating equipments( aligner, stepper) and electronic microscope( SEM, TEM) as a high precision manufacturing and inspection equipment in semiconductor production companies, precision examination and measuring laboratories. Mostly, these equipments are characterized by projection and target part. The relative displacements between projection and target part are dominant roles in vibrational problem in these precision equipments. These relative displacements are determined by the position of incoming vibration and the difference of vibration response in projection and target part. In this study, the allowable vibrational limits are suggested and the vibrational reduction plans are proposed by measurement and analysis of vibration phenomenon in the Clean Room in PDP(plasma display panel) production building. The vibration performance is evaluated by comparison relative displacements between projection and target part before/after the vibration isolation plan.

Localization of Mobile Robot Using Color Landmark mounted on Ceiling (천장 부착 컬러 표식을 이용한 이동로봇의 자기위치추정)

  • Oh, Jong-Kyu;Lee, Chan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.91-94
    • /
    • 2001
  • In this paper, we proposed localization method of mobile robot using color landmark mounted on ceiling. This work is composed 2 parts : landmark recognition part which finds the position of multiple landmarks in image and identifies them and absolute position estimation part which estimates the location and orientation of mobile robot in indoor environment. In landmark recognition part, mobile robot detects artificial color landmarks using simple histogram intersection method in rg color space which is insensitive to the change of illumination. Then absolute position estimation part calculates relative position of the mobile robot to the detected landmarks. For the verification of proposed algorithm, ceiling-orientated camera was installed on a mobile robot and performance of localization was examined by designed artificial color landmarks. As the result of test, mobile robot could achieve the reliable landmark detection and accurately estimate the position of mobile robot in indoor environment.

  • PDF

Initial Pole Position Estimation of a Magnetic Pole Sensorless Permanent Magnet Synchronous Motor (자극센서 없는 영구자석 동기전동기의 초기 자극위치 추정)

  • Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.127-131
    • /
    • 2003
  • This paper describes an initial pole position estimation method of a magnetic pole sensorless permanent magnet synchronous motor(PMSM) with an incremental encoder, The accurate initial pole position is estimated by using an efficient numerical method of Secant Method, which finds either of two zero torque/force positions and then the correct d-axis. It can be simply applicable to both rotary and linear PMSM because it only requires the tuned current controller and the relative position information. The experimental results show the validity of the proposed method with respect to highly accurate pole position estimation under the moderate moving distance and convergence time.

  • PDF