• 제목/요약/키워드: Relative Position

검색결과 1,250건 처리시간 0.041초

이동 로봇 절대위치 추적 제어 시스템 (Mobile robot absolute position tracking system)

  • 최현승;현웅근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1811-1812
    • /
    • 2008
  • This paper represents a absolute position tracking system with sensor fusion and PD-gain. this paper presents an accurate localization method by relative and absolute sensor fusion and PD control for position tracking of mobile robot. we developed a sensor based absolution position tracking and smooth moving algorithm using this algorithm.

  • PDF

FPGA based HW/SW co-design for vision based real-time position measurement of an UAV

  • Kim, Young Sik;Kim, Jeong Ho;Han, Dong In;Lee, Mi Hyun;Park, Ji Hoon;Lee, Dae Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.232-239
    • /
    • 2016
  • Recently, in order to increase the efficiency and mission success rate of UAVs (Unmanned Aerial Vehicles), the necessity for formation flights is increased. In general, GPS (Global Positioning System) is used to obtain the relative position of leader with respect to follower in formation flight. However, it can't be utilized in environment where GPS jamming may occur or communication is impossible. Therefore, in this study, monocular vision is used for measuring relative position. General PC-based vision processing systems has larger size than embedded systems and is hard to install on small vehicles. Thus FPGA-based processing board is used to make our system small and compact. The processing system is divided into two blocks, PL(Programmable Logic) and PS(Processing system). PL is consisted of many parallel logic arrays and it can handle large amount of data fast, and it is designed in hardware-wise. PS is consisted of conventional processing unit like ARM processor in hardware-wise and sequential processing algorithm is installed on it. Consequentially HW/SW co-designed FPGA system is used for processing input images and measuring a relative 3D position of the leader, and this system showed RMSE accuracy of 0.42 cm ~ 0.51 cm.

UAV 자동 편대비행을 위한 디지털 빔포밍 및 ToA 기반의 상대위치 추정 시스템 (A Relative Position Estimation System using Digital Beam Forming and ToA for Automatic Formation Flight of UAV)

  • 김재완;윤준용;주양익
    • 한국멀티미디어학회논문지
    • /
    • 제17권9호
    • /
    • pp.1092-1097
    • /
    • 2014
  • It is difficult to perform automatic formation flight of UAV (Unmanned Aerial vehicle) when GPS (Global Positionig System) is out of order or has a system error, since the relative position estimation in the flight group is impossible in that case. In this paper, we design a relative localization system for the automatic formation flight of UAV. For this purpose, we adopt digital beam forming (DBF) to estimate the angle with the central controller of the flight group and Particle Filtering scheme to compensate the estimation error of ToA (time of arrival) method. Computer simulation results present a proper distance between the central controller and a following unit to maintain the automatic formation flight.

마이크로 가공에서 AE 신호를 이용한 z 축 절삭깊이 보정에 관한 연구 (A Study on the Calibration of Z-axis Depth of Cut using AE Signal in Micro-machining)

  • 강익수;김전하;강명창;이기용;김정석;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.410-413
    • /
    • 2005
  • There are technical requirements to manufacture large size functional parts with not only simple geometries like a flat or spherical surface but also sculptured geometries. In addition, the required machining accuracy for these parts is becoming more severe day-by-day. In general, the forms of machined parts are determined by relative position between the workpiece and the tool during cutting. To improve machining accuracy, the relative position error should be maintained within the required accuracy. This study deals with estimation and calibration of depth of cut using AE signal in micro-machining.

  • PDF

A Development of Docking Phase Analysis Tool for Nanosatellite

  • Jeong, Miri;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권3호
    • /
    • pp.187-197
    • /
    • 2020
  • In order to avoid the high cost and high risk of demonstration mission of rendezvous-docking technology, missions using nanosatellites have recently been increasing. However, there are few successful mission cases due to many limitations of nanosatellites like small size, power limitation, and limited performances of sensor, thruster, and controller. To improve the probability of rendezvous-docking mission success using nanosatellite, a rendezvous-docking phase analysis tool for nanosatellites is developed. The tool serves to analyze the relative position and attitude control of the chaser satellite at the docking phase. In this tool, the Model Predictive Controller (MPC) is implemented as a controller, and Extended Kalman Filter (EKF) is adopted as a filter for noise filtering. To verify the performance and effectiveness of the developed tool for nanosatellites, simulation study was conducted. Consequently, we confirmed that this tool can be used for the analysis of relative position and attitude control for nanosatellites in the rendezvous-docking phase.

새로운 문자입력장치 개발을 위한 숙련타이피스트의 타이핑 위치 측정 (The Measurement of Skilled Typist's Typing Position for Developments of New Text Entry Input Device)

  • 김진영;이호길;황성호;최혁렬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.125-130
    • /
    • 2001
  • Skilled typists can type characters or words without looking at keyboard, relying on the finger's relative position. If the relative positions of the fingers can be identified, a virtual keyboard may be accomplished by applying the concept of "DataGlove" or "FingerRing". The virtual keyboard may be efficient as a new mobile input device supporting QWERTY keyboard layout. For the purpose of investigating skilled typing pattern, in this paper the touch-positions of the fingers are measured with a touchscreen while five skilled typists type a long sentence. From these measurements it can be observed that the groups of touch-positions are classified into alphabet characters. Though there are some overlapped groups we can find constant distances capable of being discriminated among the groups from investigation of the change of touch-position for touch-time. Based on the analysis, the prediction algorithm of the constant distance is proposed and evaluated, which is useful for realization of a portable virtual keyboard.le virtual keyboard.

  • PDF

광열변위법을 이용한 반무한 고체의 열확산계수 결정에 대한 이론적 연구 (A Theoretical Study for the Thermal Diffusivity Measurement of Semi-Infinite Solid Using Photothermal Displacement Method)

  • 전필수;이광재;유재석;박영무;이종화
    • 대한기계학회논문집B
    • /
    • 제26권12호
    • /
    • pp.1747-1755
    • /
    • 2002
  • A complete theoretical treatment of the photothermal displacement technique has been performed for thermal diffusivity measurement in semi-infinite solid materials. The influence of the parameters, such as radius and modulation frequency of the heating beam and the thermal diffusivity, was studied. Usually, thermal diffusivity was determined by the deformation angle and phase angle as the relative position between the heating and probe beams. In this study, we proposed the simple analysis method based on the real part of deformation gradient as the relative position between two beams. It is independent in the parameters such as power of heating beam, absorption coefficient, reflectivity, Poisson's ratio, and thermal expansion coefficient.

무인기의 정밀 낙하산 착륙을 위한 전개지점 결정 (Deploy Position Determination for Accurate Parachute Landing of a UAV)

  • 김인한;박상혁;박우성;유창경
    • 한국항공우주학회지
    • /
    • 제41권6호
    • /
    • pp.465-472
    • /
    • 2013
  • 본 논문에서는 요구 위치에 정밀 착륙을 위한 낙하산 전개지점 선정 기법을 제안한다. 무인기-낙하산 시스템을 위해 9-DOF 운동 모델을 구성하였고, 신경회로망을 학습시키기 위한 입출력 데이터 셋을 구성하였다. 입력 데이터 셋은 현재 항공기 위치, 속도정보 및 바람 정보로 구성되어 있고, 출력 데이터 셋은 9-DOF 운동 모델을 시뮬레이션 하여 획득한 착륙 위치 정보이다. 이를 이용하여 nonlinear function approximator를 구성함으로써 현재 위치로부터 상대적인 착륙 지점을 예측할 수 있고, 예측된 착륙 지점과 요구 착륙 지점과의 상대적인 거리 오차를 계산하여 이를 보상해줌으로써 낙하산 전개 지점을 결정할 수 있다.

Influence of Hip Abduction Velocity and Position on the Onset Times of Gluteus Medius and Tensor Fascia Latae Relative to Quadratus Lumborum in Healthy Subject: A Pilot Study

  • Kim, Jung-Bin;Yun, Chang-Kyo;Hwang-Bo, Gak
    • 대한물리의학회지
    • /
    • 제11권3호
    • /
    • pp.105-110
    • /
    • 2016
  • PURPOSE: The aim of this study was to investigate the influence of hip abduction velocity and position change on the relative onset times of the gluteus medius, the tensor fascia latae, and the quadratus lumborum in healthy subjects. METHODS: For this study, 15 healthy young adults were recruited. The subjects were asked to move their hip joints up to 35 degrees of abduction at a speed of $70^{\circ}/sec$ and $17.5^{\circ}/sec$ in the supine and side-lying positions. Electromyography data was collected for the gluteus medius, tensor fascia latae, and quadratus lumborum to determine the onset times. RESULTS: There were significant differences between the fast speed ($70^{\circ}/sec$) and the slow speed ($17.5^{\circ}/sec$) in hip abduction in a supine position and in a side-lying position, relatively. The onset time of the gluteus medius was faster than that of the tensor fascia latae and the quadratus lumborum in the side-lying position at the speed of $70^{\circ}/sec$ and $17.5^{\circ}/sec$. CONCLUSION: The findings of this study indicated that hip abduction in a side-lying position is an effective method to recruit the gluteus medius earlier than the tensor fascia latae and the quadratus lumborum. Thus, the exercise position is considered necessory in the purpose of rehabilitation for gluteus medius muscle strengthening program.

복수 PSD와 비콘을 이용한 칼만필터 기반 상대항법에 대한 연구 (Relative Navigation Study Using Multiple PSD Sensor and Beacon Module Based on Kalman Filter)

  • 송정규;정준호;양승원;김승균;석진영
    • 한국항공우주학회지
    • /
    • 제46권3호
    • /
    • pp.219-229
    • /
    • 2018
  • 본 논문에서는 복수 Position Sensitive Detector(PSD) 센서와 IR Beacon Module(적외선 비콘 모듈)을 이용하여 우주비행체의 랑데부/도킹/군집 운용과 같은 근접 운용을 위한 칼만 필터 기반의 상대항법 알고리즘 연구를 수행한다. PSD 센서와 적외선 비콘 모듈은 각각 Target Satellite과 Chaser Satellite에 장착되어 위성의 상대 위치와 상대 자세 정보를 획득하여 위성간 근접운용에 사용한다. 각각의 상대 항법 기법의 성능을 비교 분석하기 위하여 수치 시뮬레이션을 수행한다. 상대항법 알고리즘에 사용된 PSD 센서와 적외선 비콘 모듈의 광학적 모델링과 작동 원리를 기반으로 칼만필터의 측정 모델을 구성한다. 확장 칼만 필터(EKF)와 무향 칼만 필터(UKF)는 우주비행체의 병진 운동 및 회전 운동에 대한 운동학 및 동역학적 특성을 활용하는 측정 융합에 기반을 둔 확률론적 상대항법 기법으로 사용된다. EKF와 UKF, 두 필터의 상대 자세 및 상대 위치 추정 성능을 비교한다. Target Satellite과 Chaser Satellite에 장착되는 PSD 센서와 적외선 비콘 모듈의 개수와 상대항법기법의 변화에 따른 수치 시뮬레이션을 수행하여 성능 변화를 확인하였다.