• 제목/요약/키워드: Relative Humidity

검색결과 2,552건 처리시간 0.026초

혼합 유기용제 포집시 습도가 활성탄관의 파과에 미치는 영향 (Effect of Relative Humidity on the Breakthrough of Charcoal Tubes during Mixed Organic Vapor Sampling)

  • 양혁승;김현욱
    • 한국산업보건학회지
    • /
    • 제6권1호
    • /
    • pp.125-137
    • /
    • 1996
  • This study was designed to investigate effects of relative humidity on the breakthrough of charcoal tubes at a fixed vapor concentration and sampling time during mixed organic vapor sampling. A vapor generator was used to generate three different concentrations of mixed organic vapor and a stainless steel chamber was fabricated and utilized to maintain three different percentages of relative humidity while maintaining a constant temperature. The results were as follows; 1. At high relative humidity, breakthrough of mixed organic vapor occurred quickly at low vapor concentration than at high vapor concentration because of the reduced adsorption volume of charcoal tube due to humidity. 2. Breakthrough by competitive adsorption of vapors onto charcoal tube was observed at first from n-hexane having the lowest boiling point and highest vapor pressure among the three organic vapors investigated, followed by TCE. No breakthrough was observed from toluene under all experimental conditions. 3. For n-hexane, breakthrough was observed after 2 hours of sampling and breakthrough rates were increased as relative humidity increased. For TCE, breakthrough was found after 3 hours of sampling and breakthrough rates by sampling time were increased as vapor concentration increased. 4. The adsorbed amount of mixed organic vapor at breakthrough was shown to have statistically significant correlations with sampling time, relative humidity, and vapor concentration in descending order of correlation. Relative humidity and sampling time for n-hexane and sampling time and concentration for TCE were both statistically significantly correlated. 5. Relative humidity was found to affect the amount of breakthrough of mixed organic vapor and n-hexane. Among three percentages of relative humidity investigated, the amount of breakthrough at 85 % relative humidity was significantly larger than those of at lower percentages of relative humidity. No statistically significant difference was found between 25 % and 55 % relative humidity. 6. The results of multiple regression analysis between breakthrough and relative humidity, vapor concentrations showed that the coefficient of determination of mixed organic vapor was 0.263 and those of n-hexane and TCE were 0.275 and 0.189, respectively. 7. Flow rates of sampling pumps used were found to be affected by relative humidity present. At 25 %, 55 %, and 85 % relative humidity, the relative errors of sampling pump were 1.4 %, 13.4 %, and 18.6 %, respectively. In conclusion, the results of this study showed that high relative humidity could reduce the adsorption volume of charcoal tubes and subsequently increase breakthrough rates. Therefore, to prevent breakthrough when sampling mixed organic vapors, it is suggested that either sampling volume be reduced on the flow rate be lowered so as to minimize breakthrough of the most volatile organic vapor in the mixture. In addition, since the flow rates of a sampling pump can be adversely affected by high relative humidity, it is recommended to use a constant flow mode pump when sampling in the highly humid environment.

  • PDF

상대습도에 따른 잣버섯의 생육형태 (Characteristics of fruit body of Neolentinus lepideus according to relative humidity)

  • 장명준
    • 한국버섯학회지
    • /
    • 제12권4호
    • /
    • pp.363-366
    • /
    • 2014
  • 본 연구는 잣버섯 재배에서 자실체의 생장과 상대습도와의 관계를 파악하기 위해 수행하였다. 상대습도가 증가할수록 갓과 대의 수분함량은 높은 경향이었고, 초발이소요일수와 생육일수는 상대습도 95%에서 가장 짧았다. 수량 및 상품수량은 다른 처리구에 비해 상대습도 95%에서 가장 많았고, 갓의 균열정도는 상대습도 65%에서 가장 강하게 나타났다.

압력, 풍속 및 습구온도계의 크기가 건습구습도계를 이용한 상대습도 측정에 미치는 영향 (The Effects of Pressure, Wind Velocity, and Diameter of Wet Element on the Measurement of Relative Humidity by a Psychrometer)

  • 지대성;김승태;박찬복
    • 설비공학논문집
    • /
    • 제2권2호
    • /
    • pp.137-141
    • /
    • 1990
  • When the relative humidity is measured with an aspirated psychrometer, three factors, which affect the measurement of relative humidity, are atmospheric pressure, the size of wet element and the wind velocity. This paper investigated the effects of the above three factors, and the computer code was developed in order to enhance the accuracy of the relative humidity measurement. As results, it is found that the relative humidity decreases by 6%RH with increasing atmospheric pressure from 650 mbar to 1100 mbar. It is found that the relative humidity drops down when the size of the wet element increases, though the effect of the size of the wet element is not significant. Finally, relative humidity increases with the increasing wind velocity. The difference between the psychrometic table in the present KS and the present results is about 2%RH maximum. As a conclusion, the three factors mentioned above should be considered in order to secure accurate measurement of relative humidity.

  • PDF

Changes in the Levels of Ergosterol and Methionine as Indicators of Lentinula edodes Quality According to the Relative Humidity During the Storage Period

  • Park, Youn-Jin;Cho, Yong-Koo;Kim, Chan-Young;Jang, Myoung-Jun
    • 한국환경과학회지
    • /
    • 제29권12호
    • /
    • pp.1199-1204
    • /
    • 2020
  • Lentinula edodes mushrooms cultivated under different relative humidities were wrapped at 4℃ and the results of storage characteristics were investigated. Changes in water content of fruiting bodies during the storage period showed the highest water content in fruit bodies harvested from the treatment with the highest relative humidity. The luminosity of the fresh fruiting bodies showed no significant change during the storage period, and the redness was higher in the relative humidity 95% treatment than in the other treatments. According to this study, the relative humidity of the pileus was 65%, and the content of Ergosterol was 0.67 ± 15 g / L at relative humidity of 65%, 80% and 95%. In addition, amino acid analysis and Principal Component Analysis (PCA) confirmed that methionine was the main cause of changes in storage time and relative humidity.

내압방폭구조에서 수소-공기와 아세틸렌-공기 혼합가스의 폭발압력과 상대습도의 상관관계 분석 (Relationship Analysis between Relative Humidity and Explosion Pressure of Hydrogen-Air and Acetylene-Air Mixtures in Flameproof Enclosure )

  • 김용태;정기효
    • 대한안전경영과학회지
    • /
    • 제24권4호
    • /
    • pp.101-107
    • /
    • 2022
  • To test a flameproof enclosure for the safety certificate, a reference pressure of explosion needs to be determined. However, the explosion pressure may be changed according to relative humidity of explosive gases. Therefore, the guideline on relative humidity should be recommended for measuring the explosion pressure for accurate and reproducible testings. This study examined the relationship of explosion pressure with relative humidity of hydrogen (31 vol %)-air and acetylene (14 vol %)-air mixture gases. The explosion pressures were measured by increasing the relative humidity of the gases by 10 % from dry state to 80 % in a cylindrical explosion enclosure of 2.3 L. on ambient temperature and atmospheric pressure (1 atm). The maximum explosive pressures were remained almost constant until the relative humidity reached 10 % for the hydrogen-air mixture and 20 % for the acetylene-air mixture. However, the maximum explosive pressures linearly decreased as the relative humidity increased. Based on the results of the study, it would be recommended to use 10 % relative humidity for the hydrogen-air mixture and 20 % for the acetylene-air mixture as the critical value in testing a flameproof enclosure.

상대습도의 변화가 PVA 함침처리지의 물성에 미치는 영향 (Effects of relative humidity on the physical properties of PVA impregnated paper)

  • 김태영;정양진;허용대;김덕기;성용주
    • 펄프종이기술
    • /
    • 제42권3호
    • /
    • pp.37-42
    • /
    • 2010
  • The properties of paper are very susceptible to moisture content originated from relative humidity. This propensity of PVA impregnated paper was investigated in this study. Especially the hardening effect of borax treatment after PVA impregnation on the response of paper sample to the relative humidity was evaluated. When the moisture content was increased with the relative humidity, tensile stretch and tear resistance were increased while tensile strength and stiffness were decreased. A great increase in folding endurance of PVA impregnated paper sample was found at the higher relative humidity. The borax treatment could reduce the response of PVA impregated paper to the relative humidity.

고분자 전해질 연료전지용 막가습기의 상대습도 추정을 위한 소프트센서 개발 (Soft Sensor Development for Predicting the Relative Humidity of a Membrane Humidifier for PEM Fuel Cells)

  • 한인수;신현길
    • 한국수소및신에너지학회논문집
    • /
    • 제25권5호
    • /
    • pp.491-499
    • /
    • 2014
  • It is important to accurately measure and control the relative humidity of humidified gas entering a PEM (polymer electrolyte membrane) fuel cell stack because the level of humidification strongly affects the performance and durability of the stack. Humidity measurement devices can be used to directly measure the relative humidity, but they cost much to be equipped and occupy spaces in a fuel cell system. We present soft sensors for predicting the relative humidity without actual humidity measuring devices. By combining FIR (finite impulse response) model with PLS (partial least square) and SVM (support vector machine) regression models, DPLS (dynamic PLS) and DSVM (dynamic SVM) soft sensors were developed to correctly estimate the relative humidity of humidified gases exiting a planar-type membrane humidifier. The DSVM soft sensor showed a better prediction performance than the DPLS one because it is able to capture nonlinear correlations between the relative humidity and the input data of the soft sensors. Without actual humidity sensors, the soft sensors presented in this work can be used to monitor and control the humidity in operation of PEM fuel cell systems.

습도 변화에 따른 에어로졸의 농도 및 크기의 변화경향 파악 (Change of the Size-Resolved Aerosol Concentration Due to Relative Humidity)

  • 정창훈;박진희;김용표
    • 한국입자에어로졸학회지
    • /
    • 제9권2호
    • /
    • pp.69-78
    • /
    • 2013
  • In this study, the atmospheric aerosol concentration measured at different relative humidity levels was analyzed. Using an optical particle counter, PM10 and PM2.5 concentration as well as particle size distribution were measured and the relation between these size resolved data and relative humidity was studied. The results showed that mass concentration increases as relative humidity increases. The comparison between PM1, PM2.5 and PM10 showed that the fine particles grow more than coarse particles as relative humidity increases. The results also showed that PM10-2.5 and relative humidity do not show close correlation, which means that the mass increase of PM10 at high relative humidity is mainly due to the growth of PM2.5.

상대습도에 따른 가스 그룹 IIB, IIA, I의 폭발압력 분석 (Effect of Relative Humidity on Explosion Pressure for Gas Group IIB, IIA, and I)

  • 김용태;정기효
    • 대한안전경영과학회지
    • /
    • 제25권1호
    • /
    • pp.51-58
    • /
    • 2023
  • Determination of explosion reference pressure is important in designing and testing flameproof enclosures (Ex d). Although relative humidity affects to explosion pressure, its effect is not well investigated for the gas group IIB, IIA, and I. This study tested explosion pressure for Ethylene (8 vol.%), Propane (4.6 vol.%), and Methane (9.8 vol.%), which are the representative gas of the gas group IIB, IIA, and I, at ambient temperature and atmospheric pressure (1 atm) under different relative humidity (0% ~ 80%). Ethylene- and Propane-air mixed gases generally tended to decrease as the relative humidity increased; however, explosion pressure was largely dropped at 20% of relative humidity compared to 0% and 10% of relative humidity. On the other hand, Methane-air mixture gas showed similar pressures at 0% and 10% of relative humidity; but no explosion occurred at more than 20%. The results of this study can be used in setting a testing protocol of explosion reference pressure for designing and testing a flameproof enclosure.

한국의 도시 규모별 습도 변화에 관한 연구 (A Study on the Change of Humidity by City Size in South Korea)

  • 고명찬;이승호
    • 대한지리학회지
    • /
    • 제48권1호
    • /
    • pp.19-36
    • /
    • 2013
  • 이 연구에서는 지난 58년(1954~2011년) 동안의 관측 자료를 보유한 14개 기상관측소의 일평균 상대습도, 일평균 수증기압을 분석하여 도시 규모별 습도 변화를 파악하였다. 연평균 상대습도는 분석기간 동안 지속적으로 감소하는 경향이며, 도시에서 비도시보다 감소하는 경향이 뚜렷하다. 계절별로는 봄철과 겨울철에 상대습도가 감소하는 경향이 뚜렷하고, 여름철에는 변화율이 작다. 연평균 수증기압은 변화 경향이 뚜렷하지 않고, 도시 규모에 의한 변화율 차이가 명확하지 않다. 상대습도와 평균기온 사이에는 음의 관계가 있으며, 도시 규모에 따른 상대습도 차이가 통계적으로 유의하였다. 상대습도와 수증기압 사이에는 양의 관계가 있지만, 도시 규모에 따른 수증기압의 차이가 뚜렷하지 않다. 한국에서 상대습도가 감소하는 경향은 도시화에 의한 기온상승 경향과 상당히 일치하지만, 수증기압의 변화는 뚜렷하지 않다.

  • PDF