Browse > Article
http://dx.doi.org/10.12812/ksms.2022.24.4.101

Relationship Analysis between Relative Humidity and Explosion Pressure of Hydrogen-Air and Acetylene-Air Mixtures in Flameproof Enclosure  

Yong-Tae, Kim (School of Industrial Engineering, University of Ulsan)
Kihyo, Jung (School of Industrial Engineering, University of Ulsan)
Publication Information
Journal of the Korea Safety Management & Science / v.24, no.4, 2022 , pp. 101-107 More about this Journal
Abstract
To test a flameproof enclosure for the safety certificate, a reference pressure of explosion needs to be determined. However, the explosion pressure may be changed according to relative humidity of explosive gases. Therefore, the guideline on relative humidity should be recommended for measuring the explosion pressure for accurate and reproducible testings. This study examined the relationship of explosion pressure with relative humidity of hydrogen (31 vol %)-air and acetylene (14 vol %)-air mixture gases. The explosion pressures were measured by increasing the relative humidity of the gases by 10 % from dry state to 80 % in a cylindrical explosion enclosure of 2.3 L. on ambient temperature and atmospheric pressure (1 atm). The maximum explosive pressures were remained almost constant until the relative humidity reached 10 % for the hydrogen-air mixture and 20 % for the acetylene-air mixture. However, the maximum explosive pressures linearly decreased as the relative humidity increased. Based on the results of the study, it would be recommended to use 10 % relative humidity for the hydrogen-air mixture and 20 % for the acetylene-air mixture as the critical value in testing a flameproof enclosure.
Keywords
Hydrogen-air; Acetylene-air; Relative humidity; Explosion pressure; Flameproof enclosure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. Y. Kim, Y. W. Chon, I. M. Lee, Y. W. Hwang(2017), "A study on the improvement of classification of explosion hazardous area using hypothetic volume through release characteristic." The Journal of Korea Safety Management & Science, 19(2):31-39. 
2 S. H. Lee, T. H. Kim(2017), "A guideline on development of LED convergence intrinsic safety luminaire for marine plants & ships and its standard." The Journal of Korea Safety Management & Science, 19(4):25-34.    DOI
3 IECEx Certificates, Search, Filters(2022), IEC standard (IEC 60079-1). Retrieved July 20, 2022 from https://www.iecex-cert.com/#/search 
4 OSHCI(2022), Statues of safety certificates on explosion-proof electric machines, tools and parts. Retrieved July 20, 2022 from https://miis.kosha.or.kr/oshci/busi/ListExpSafetyCheck.do?searchType=D
5 IEC 60079-1(2014), Explosive atmospheres-Part 1: Equipment protection by flameproof enclosuresd. International Electrotechnical Commission(IEC), Geneva, Switzerland 
6 L. K. Cashdollar, A. I. Zlochower, M. G. Green, A. R. Thomas, M. Hertzberg(2000), "Flammability of methane, propane, and hydrogen gases." Loss Prevention in the Process Industries, 13(3-5): 327-340.    DOI
7 Y. Xiong, Y. Ma, H. Zhao, Y. Hu(2020), "Simulation study on the explosion characteristics of premixed hydrogen-air mixtures." Earth and Environmental Science, 546. 
8 D. Razus, C. Movileanu, V. Brinzea, D. Oancea(2006), "Explosion pressures of hydrocarbon-air in closed vessels." Hazardous Materials, B135:58-65. 
9 F. Cammarota, D. Benedetto, V. D. Sarli, E. Salzano, G. Russo(2009), "Combined effects of initial pressure and turbulence on explosions of hydrogen-enriched methane/air mixtures." Loss Prevention in the Process Industries, 22:607-613.    DOI
10 D. Razus, V. Brinzea, M. Mitu, D. Oancea(2010), "Temperature and pressure influence on explosion pressures of closed vessel propane-air deflagrations." Hazardous Materials, 174:548-555.    DOI
11 Y. Cao, J. Guo, K. Hu, L. Xie, B. Li(2017), "Effect of ignition location on external explosion in hydrogen-air explosion venting." International Journal of Hydrogen Energy, 42:10547-10554.    DOI
12 G. Ciccarelli, Q. Li, C. Metrow(2018), "The three-dimensional structure of a detonation wave propagating in a round tube with orifice plates." Shock Waves, 28(5):1019-1030.    DOI
13 L. Q. Wang, H. H. Ma, Z. W. Shen(2019), "On the explosion characteristics of hydrogen-air mixtures in a constant volume vessel with an orifice plate." International Journal of Hydrogen Energy, 44:6271-6277.    DOI
14 H. Moradi, F. Sereshki, M. Ataei, M. Nazari(2020), "Evaluation of the effect of the moisture content of coal dust on the prediction of the coal explosion index." MGPB, 35(1):37-47.    DOI
15 S. Q. Du, G. Li, B. Wang(2017), "Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion." Hazardous Materials, 323:593-601.    DOI
16 S. Wang, D. Wu, H. Guo, X. Li, X. Pu, Z. Yan, P. Zhang(2020), "Effects of concentration, temperature, ignition energy and relative humidity on the overpressure transients of fuel-air explosion in a medium-scale fuel tank." Fuel, 259:116265.    DOI
17 IEC 60079-2(2014), Explosive atmospheres-Part 2: Equipment protection by pressurized enclosure p. International Electrotechnical Commission(IEC), Geneva, Switzerland. 
18 ISO/IEC 80079-20-1(2017), Explosive atmospheres-Part 20-1: Material characteristics for gas and vapour classification-Test methods and data. International Electrotechnical Commission(IEC), Geneva, Switzerland.