• Title/Summary/Keyword: Relative Distance

Search Result 1,030, Processing Time 0.025 seconds

A Study on Setting the Minimum and Maximum Distances for Distance Attenuation in MPEG-I Immersive Audio

  • Lee, Yong Ju;Yoo Jae-hyoun;Jang, Daeyoung;Kang, Kyeongok;Lee, Taejin
    • Journal of Broadcast Engineering
    • /
    • v.27 no.7
    • /
    • pp.974-984
    • /
    • 2022
  • In this paper, we introduce the minimum and maximum distance setting methods used in geometric distance attenuation processing, which is one of spatial sound reproduction methods. In general, sound attenuation by distance is inversely proportional to distance, that is 1/r law, but when the relative distance between the user and the audio object is very short or long, exceptional processing might be performed by setting the minimum distance or the maximum distance. While MPEG-I Immersive Audio's RM0 uses fixed values for the minimum and maximum distances, this study proposes effective methods for setting the distances considering the signal gain of an audio object. Proposed methods were verified through simulation of the proposed methods and experiments using RM0 renderer.

Electron Tunneling and Electrochemical Currents through Interfacial Water Inside an STM Junction

  • Song, Moon-Bong;Jang, Jai-Man;Lee, Chi-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.71-74
    • /
    • 2002
  • The apparent barrier height for charge transfer through an interfacial water layer between a Pt/Ir tip and a gold surface has been measured using STM technique. The average thickness of the interfacial water layer inside an STM junction was controlled by the amount of moisture. A thin water layer on the surface was formed when relative humidity was in the range of 10 to 80%. In such a case, electron tunneling through the thin water layer became the majority of charge transfers. The value of the barrier height for the electron tunneling was determined to be 0.95 eV from the current vs. distance curve, which was independent of the tip-sample distance. On the other hand, the apparent barrier height for charge transfer showed a dependence on tip-sample distance in the bias range of 0.1-0.5 V at a relative humidity of approximately 96%. The non-exponentiality for current decay under these conditions has been explained in terms of electron tunneling and electrochemical processes. In addition, the plateau current was observed at a large tip-sample distance, which was caused by electrochemical processes and was dependent on the applied voltage.

Comparison of Model Results for Variation and Resolution of Meteorological Field Using HY-SPLIT (기상장의 종류와 해상도에 따른 HY-SPLIT 모델의 결과 비교)

  • Lee, Chong-Bum;Park, Sang-Jin;Kim, Jea-Chul;Jang, Yun-Jung
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.223-230
    • /
    • 2010
  • Trajectory dispersion models are used for the dispersion calculations in air quality assessments, Yellow-sand modeling, environmental planning and the emergency response. Meso-scale forcing and coastal circulations are calculated by trajectory model in the East Asia region. In this study the meteorological fields (GDAS and MM5) coupled to the trajectory model (HY-SPLIT) are applied to simulate the transport and the dispersion. Seoul is selected as a starting point of the HY-SPLIT. The sensitivity studies are performed by conducting an ensemble of simulations using the GDAS and the MM5 model for the same dispersion cases. The results in this study show a significant difference depending on the resolution of meteorological models. Additionally, in most cases of the compared tionally,results from MM5 and GDAS, the absolute and relative distance, shows significant difference and the difference increased with the increasing distance of HY-SPLIT. Therefore, for the case of small domai for twi d field distefbution over complex terrai, should be used only high model temporal or spatial resolution to improve the HY-SPLIT model results.

Passive Ranging Based on Planar Homography in a Monocular Vision System

  • Wu, Xin-mei;Guan, Fang-li;Xu, Ai-jun
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.155-170
    • /
    • 2020
  • Passive ranging is a critical part of machine vision measurement. Most of passive ranging methods based on machine vision use binocular technology which need strict hardware conditions and lack of universality. To measure the distance of an object placed on horizontal plane, we present a passive ranging method based on monocular vision system by smartphone. Experimental results show that given the same abscissas, the ordinatesis of the image points linearly related to their actual imaging angles. According to this principle, we first establish a depth extraction model by assuming a linear function and substituting the actual imaging angles and ordinates of the special conjugate points into the linear function. The vertical distance of the target object to the optical axis is then calculated according to imaging principle of camera, and the passive ranging can be derived by depth and vertical distance to the optical axis of target object. Experimental results show that ranging by this method has a higher accuracy compare with others based on binocular vision system. The mean relative error of the depth measurement is 0.937% when the distance is within 3 m. When it is 3-10 m, the mean relative error is 1.71%. Compared with other methods based on monocular vision system, the method does not need to calibrate before ranging and avoids the error caused by data fitting.

A Relative Depth Estimation Algorithm Using Focus Measure (초점정보를 이용한 패턴간의 상대적 깊이 추정알고리즘 개발)

  • Jeong, Ji-Seok;Lee, Dae-Jong;Shin, Yong-Nyuo;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.527-532
    • /
    • 2013
  • Depth estimation is an essential factor for robot vision, 3D scene modeling, and motion control. The depth estimation method is based on focusing values calculated in a series of images by a single camera at different distance between lens and object. In this paper, we proposed a relative depth estimation method using focus measure. The proposed method is implemented by focus value calculated for each image obtained at different lens position and then depth is finally estimated by considering relative distance of two patterns. We performed various experiments on the effective focus measures for depth estimation by using various patterns and their usefulness.

Experimental Study of Spacecraft Pose Estimation Algorithm Using Vision-based Sensor

  • Hyun, Jeonghoon;Eun, Youngho;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.263-277
    • /
    • 2018
  • This paper presents a vision-based relative pose estimation algorithm and its validation through both numerical and hardware experiments. The algorithm and the hardware system were simultaneously designed considering actual experimental conditions. Two estimation techniques were utilized to estimate relative pose; one was a nonlinear least square method for initial estimation, and the other was an extended Kalman Filter for subsequent on-line estimation. A measurement model of the vision sensor and equations of motion including nonlinear perturbations were utilized in the estimation process. Numerical simulations were performed and analyzed for both the autonomous docking and formation flying scenarios. A configuration of LED-based beacons was designed to avoid measurement singularity, and its structural information was implemented in the estimation algorithm. The proposed algorithm was verified again in the experimental environment by using the Autonomous Spacecraft Test Environment for Rendezvous In proXimity (ASTERIX) facility. Additionally, a laser distance meter was added to the estimation algorithm to improve the relative position estimation accuracy. Throughout this study, the performance required for autonomous docking could be presented by confirming the change in estimation accuracy with respect to the level of measurement error. In addition, hardware experiments confirmed the effectiveness of the suggested algorithm and its applicability to actual tasks in the real world.

Vehicle - to - Vehicle Distance Control using a Vehicle Trajectory Prediction Method (차량 궤적 예측기법을 이용한 차간 거리 제어)

  • 조상민;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.123-129
    • /
    • 2002
  • This paper proposes a vehicle trajectory prediction method far application to vehicle-to-vehicle distance control. This method is based on 2-dimensional kinematics and a Kalman filter has been used to estimate acceleration of the object vehicle. The simulation results using the proposed control method show that the relative distance characteristics can be improved via the trajectory prediction method compared to the customary intelligent cruise control algorithm.

The relationship to Expected Relative Loss and Cpm by Using Loss Function (손실함수에 의한 기대상대손실과 Cpm의 관련성)

  • 구본철;고수철;김종수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.41
    • /
    • pp.213-220
    • /
    • 1997
  • Process capability Indices compare the actual performance of manufacturing process to the desired performance. The relationship between the capability index Cpm and the expected squared error loss provides an intuitive interpretation of Cpm. By putting the loss in relative terms a user needs only to specify the target and the distance from the target at which the product would have zero worth, or alternatively, the loss at the specification limits. Confidence limits for the expected relative loss are discussed, and numerical illustration is given.

  • PDF

Local Obviation as a Relative Phenomenon

  • Lee, Gun-Soo
    • English Language & Literature Teaching
    • /
    • no.5
    • /
    • pp.63-78
    • /
    • 1999
  • In this paper, I explain why local obviation (Condition B of Chomskys binding theory) should be viewed as a relative phenomenon, and establish a correlation between Local Obviation (henceforth LO) effects and the Referential Hierarchy of Korean anaphors proposed in Lee (1997): ku (he) > caki (self) > casin (self) > cakicasin (selfself) = selo (each other). I show that LO characterized as a relative phenomenon may enable us to view Conditions B and C of the binding theory simply as an instantiation of varying degrees of (long distance) disjoint reference effects on the same continuum.

  • PDF

A model of a relative evaluation of the transfer distance between two modes (환승센터의 두 수단간 환승거리의 상대적 적정성 평가)

  • Cha, Dong-Deuk;O, Jae-Hak;Park, Wan-Yong;Park, Seon-Bok
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • One of the problems we face up at the time of planning or improving a transportation transfer facility is which modes and how close we have to put together. The goal here is to keep the connecting transportation mode as close as possible to the prime transit mode, so people travel a minimum transfer path, a distance from one mode to another. Too much a physical separation between modes will limit, even with an intensive improvement of the component links, the level of service of a transfer path as a whole. This study defined a transfer path as the whole stretch of the distance from an arrival point of one mode to the departure point of the connecting mode. The transfer path was divided into three typical segments as side walk, stairways, and indoor corridors. Preference surveys were made for each of these segments, resulting in relative resistance. The sum of individual segments weighted with the relative resistance will make a transfer resistance of the path, which in turn constitutes a transfer utility function together with the overall satisfaction score obtained by the interview survey. The transfer utility function has been utilized to evaluate the transfer distance between modes.