Comparison of Model Results for Variation and Resolution of Meteorological Field Using HY-SPLIT

기상장의 종류와 해상도에 따른 HY-SPLIT 모델의 결과 비교

  • Lee, Chong-Bum (Department of Environmental Science Kangwon National University) ;
  • Park, Sang-Jin (Department of Environmental Science Kangwon National University) ;
  • Kim, Jea-Chul (Department of Environmental Science Kangwon National University) ;
  • Jang, Yun-Jung (Department of Environmental Science Kangwon National University)
  • Received : 2010.01.11
  • Accepted : 2010.05.09
  • Published : 2010.06.30

Abstract

Trajectory dispersion models are used for the dispersion calculations in air quality assessments, Yellow-sand modeling, environmental planning and the emergency response. Meso-scale forcing and coastal circulations are calculated by trajectory model in the East Asia region. In this study the meteorological fields (GDAS and MM5) coupled to the trajectory model (HY-SPLIT) are applied to simulate the transport and the dispersion. Seoul is selected as a starting point of the HY-SPLIT. The sensitivity studies are performed by conducting an ensemble of simulations using the GDAS and the MM5 model for the same dispersion cases. The results in this study show a significant difference depending on the resolution of meteorological models. Additionally, in most cases of the compared tionally,results from MM5 and GDAS, the absolute and relative distance, shows significant difference and the difference increased with the increasing distance of HY-SPLIT. Therefore, for the case of small domai for twi d field distefbution over complex terrai, should be used only high model temporal or spatial resolution to improve the HY-SPLIT model results.

Keywords

References

  1. 송은영, 2007, 광화학 모델을 이용한 수도권 및 주변지역의 오존 시공간거동 모사, 강원대학교 대학원 이학박사논문.
  2. 이종범, 2000, 대기오염기상학, 신광문화사, p.171-­176.
  3. 이종범, 김재철, 천태훈, 2009, 위성자료를 이용한 MM5 4자원자료동화가 광화학모델의 정확도에 미치는 영향 고찰, 한국대기환경학회지, 25(4), 264-274.
  4. 정관영, 1996, 퍼프 유적선모델에 의한 대기오염물 질의 장거리수송량의 평가, 한국대기보전학회지, 12(2), 167-177.
  5. A. STOHL, 1998, Computation, Accuracy and Applications of Trajectories - A Review and Bibliography, Atmospheric Environment, 32(6), 947-966. https://doi.org/10.1016/S1352-2310(97)00457-3
  6. A. Yerramilli, V. S. Challa, J. lndracanti, H. Dasari, J. Baham, C. Patrick, J. Young, R. Hughes, L. D. White, M. G. Hardy, and S. Swanier, 2008, Some Observational and Modelling Studies of the Atmospheric Boundary layer at Mississippi Gulf Coast for Air Pollution Dispersion Assessment, Environmental Health Research, 5(5), 484-497.
  7. Draxler, R. R., 1987, Sensitivity of a Trajectory Model to the Spatial and Temporal Resolution of the Meteorological Data during CAPTEX. https://doi.org/10.1175/1520-0450(1987)026<1577:SOATMT>2.0.CO;2
  8. Draxler, R. R. and Hess, G. D., 2004, Description of the Hysplit_4 Modeling System. NOAA Technical Memorandum ERL ARL-224, 25.
  9. E. M. Choi, S. H. Kim, T. M. Holsen, and S. M. Yi, 2008, Total gaseous concentrations in mercury in Seoul, Korea: Local sources compared to long-range transport from China and Japan, Environmental Pollution, In Press, Corrected Proof, Available online
  10. G. Wang, K. Kawamura, and M. Lee, 2009, Comparison of organic compositions in dust storm and normal aerosol samples collected at Gosan, Jeju Island, during spring 2005, Atmospheric Environment, 43, 219-227. https://doi.org/10.1016/j.atmosenv.2008.09.046
  11. HYSPLIT_4(2003) NOAA ARL HYSPLIT Model,
  12. J. V. Niemi, S. Saarikoski, M. Aurela, H. Tervahattu, R. Hillamo, D. L. Westphal, P. Aamio, T. Koskentalo, U. Makkonen, H. Vehkamaki, and M. Kulmala, 2008, Long-range transport episodes of fine particles in southern Finland during 1999-2007, Atmospheric Environment, In Press, Accepted Manuscript, Available online.
  13. N. I. R. Rivera, T. E. Gill, K. A. Gebhart, J. L. Hand, M. P. Bleiweiss, and R. M. Fitzgerald, 2009, Wind modeling of Chihuahuan Desert dust outbreaks, Atmospheric Environment, 43, 347-354. https://doi.org/10.1016/j.atmosenv.2008.09.069
  14. Rolph, G. D. and Draxler, R. R., 1990, Sensitivity of three dimensional trajectories to the spatial and temporal densities of the wind field. Journal of Applied Meteorology, 29, 1043-1054. https://doi.org/10.1175/1520-0450(1990)029<1043:SOTDTT>2.0.CO;2
  15. S. Lee, L. Ashbaugh, 2007, The impact of trajectory starting heights on the MURA trajectory source apportionment (TSA) method, Atmospheric Environment, 41, 7022-7036. https://doi.org/10.1016/j.atmosenv.2007.05.005
  16. Stauffer, D. R. and Seaman, N. L., 1994, Multiscale four-dimensional data assimilation, Journal of Applied Meteorology, 33, 416-434. https://doi.org/10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2
  17. Wain, A. G., Lee, S., Mills, G. A., Hess, G. D., Cope, M. E., and Tindale, N. W., 2006, Meteorological overview and verification of HYSPLIT and AAQFS dust forecasts for the duststorm of 22-24 October 2002, Australian Meteorological Magazine 55:1.