• 제목/요약/키워드: Relative Attitude Estimation

검색결과 14건 처리시간 0.036초

Vision-Based Relative State Estimation Using the Unscented Kalman Filter

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.24-36
    • /
    • 2011
  • A new approach for spacecraft absolute attitude estimation based on the unscented Kalman filter (UKF) is extended to relative attitude estimation and navigation. This approach for nonlinear systems has faster convergence than the approach based on the standard extended Kalman filter (EKF) even with inaccurate initial conditions in attitude estimation and navigation problems. The filter formulation employs measurements obtained from a vision sensor to provide multiple line(-) of(-) sight vectors from the spacecraft to another spacecraft. The line-of-sight measurements are coupled with gyro measurements and dynamic models in an UKF to determine relative attitude, position and gyro biases. A vector of generalized Rodrigues parameters is used to represent the local error-quaternion between two spacecraft. A multiplicative quaternion-error approach is derived from the local error-quaternion, which guarantees the maintenance of quaternion unit constraint in the filter. The scenario for bounded relative motion is selected to verify this extended application of the UKF. Simulation results show that the UKF is more robust than the EKF under realistic initial attitude and navigation error conditions.

UUV의 DVL 항법을 위한 자세 추정 방법 비교 (Comparison of Attitude Estimation Methods for DVL Navigation of a UUV)

  • 정석기;고낙용;최현택
    • 로봇학회논문지
    • /
    • 제9권4호
    • /
    • pp.216-224
    • /
    • 2014
  • This paper compares methods for attitude estimation of a UUV(Unmanned Underwater Vehicle). Attitude estimation plays a key role in underwater navigation using DVL(Doppler Velocity Log). The paper proposes attitude estimation methods using EKF(Extended Kalman Filter), UKF(Unscented Kalman Filter), and CF(Complementary Filter). It derives methods using the measurements from MEMS-AHRS(Microelectromechanical Systems-Attitude Heading Reference System) and DVL. The methods are used for navigation in a test pool and their navigation performance is compared. The results suggest that even if there is no measurement relative to some absolute landmarks, DVL-only navigation can be useful for navigation in a limited time and range.

연속 항공영상과 비행체의 자세 정보를 이용한 상대적 편이 추정에 관한 연구 (A study on the estimation of relative shift vector from aerial image sequence and aircraft attitude information)

  • 김종문;박래홍;이쾌희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.147-152
    • /
    • 1992
  • This paper describes a new approach that can extract the relative shift vectors between two aerial image sequences for implementing the visual navigation system. This method minimizes the noise included in the aircraft attitude information that represents the changes of the aircraft attitude using the statistical method and Kalman Filtering method. This result can be used to find the relative shift vectors which are independent of the attitude changes indicating the true trajectories of aircraft. We applied this method to the image about which we had already known the information of aircraft attitude, and that result showed that the errors were minimized successfully.

  • PDF

Monocular Vision-Based Guidance and Control for a Formation Flight

  • Cheon, Bong-kyu;Kim, Jeong-ho;Min, Chan-oh;Han, Dong-in;Cho, Kyeum-rae;Lee, Dae-woo;Seong, kie-jeong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.581-589
    • /
    • 2015
  • This paper describes a monocular vision-based formation flight technology using two fixed wing unmanned aerial vehicles. To measuring relative position and attitude of a leader aircraft, a monocular camera installed in the front of the follower aircraft captures an image of the leader, and position and attitude are measured from the image using the KLT feature point tracker and POSIT algorithm. To verify the feasibility of this vision processing algorithm, a field test was performed using two light sports aircraft, and our experimental results show that the proposed monocular vision-based measurement algorithm is feasible. Performance verification for the proposed formation flight technology was carried out using the X-Plane flight simulator. The formation flight simulation system consists of two PCs playing the role of leader and follower. When the leader flies by the command of user, the follower aircraft tracks the leader by designed guidance and a PI control law, and all the information about leader was measured using monocular vision. This simulation shows that guidance using relative attitude information tracks the leader aircraft better than not using attitude information. This simulation shows absolute average errors for the relative position as follows: X-axis: 2.88 m, Y-axis: 2.09 m, and Z-axis: 0.44 m.

확장형 칼만 필터를 이용한 인공위성 편대비행 상대 상태 추정 (Extended Kalman Filter Based Relative State Estimation for Satellites in Formation Flying)

  • 이영구;방효충
    • 제어로봇시스템학회논문지
    • /
    • 제13권10호
    • /
    • pp.962-969
    • /
    • 2007
  • In this paper, an approach is developed for relative state estimation of satellite formation flying. To estimate relative states of two satellites, the Extended Kalman Filter Algorithm is adopted with the relative distance and speed between two satellites and attitude of satellite for measurements. Numerical simulations are conducted under two circumstances. The first one presents both chief and deputy satellites are orbiting a circular reference orbit around a perfectly spherical Earth model with no disturbing acceleration, in which the elementary relative orbital motion is taken into account. In reality, however, the Earth is not a perfect sphere, but rather an oblate spheroid, and both satellites are under the effect of $J_2$ geopotential disturbance, which causes the relative distance between two satellites to be on the gradual increase. A near-Earth orbit decays as a result of atmospheric drag. In order to remove the modeling error, the second scenario incorporates the effect of the $J_2$ geopotential force, and the atmospheric drag, and the eccentricity in satellite orbit are also considered.

복수 PSD와 비콘을 이용한 칼만필터 기반 상대항법에 대한 연구 (Relative Navigation Study Using Multiple PSD Sensor and Beacon Module Based on Kalman Filter)

  • 송정규;정준호;양승원;김승균;석진영
    • 한국항공우주학회지
    • /
    • 제46권3호
    • /
    • pp.219-229
    • /
    • 2018
  • 본 논문에서는 복수 Position Sensitive Detector(PSD) 센서와 IR Beacon Module(적외선 비콘 모듈)을 이용하여 우주비행체의 랑데부/도킹/군집 운용과 같은 근접 운용을 위한 칼만 필터 기반의 상대항법 알고리즘 연구를 수행한다. PSD 센서와 적외선 비콘 모듈은 각각 Target Satellite과 Chaser Satellite에 장착되어 위성의 상대 위치와 상대 자세 정보를 획득하여 위성간 근접운용에 사용한다. 각각의 상대 항법 기법의 성능을 비교 분석하기 위하여 수치 시뮬레이션을 수행한다. 상대항법 알고리즘에 사용된 PSD 센서와 적외선 비콘 모듈의 광학적 모델링과 작동 원리를 기반으로 칼만필터의 측정 모델을 구성한다. 확장 칼만 필터(EKF)와 무향 칼만 필터(UKF)는 우주비행체의 병진 운동 및 회전 운동에 대한 운동학 및 동역학적 특성을 활용하는 측정 융합에 기반을 둔 확률론적 상대항법 기법으로 사용된다. EKF와 UKF, 두 필터의 상대 자세 및 상대 위치 추정 성능을 비교한다. Target Satellite과 Chaser Satellite에 장착되는 PSD 센서와 적외선 비콘 모듈의 개수와 상대항법기법의 변화에 따른 수치 시뮬레이션을 수행하여 성능 변화를 확인하였다.

Integrated System for Autonomous Proximity Operations and Docking

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.43-56
    • /
    • 2011
  • An integrated system composed of guidance, navigation and control (GNC) system for autonomous proximity operations and the docking of two spacecraft was developed. The position maneuvers were determined through the integration of the state-dependent Riccati equation formulated from nonlinear relative motion dynamics and relative navigation using rendezvous laser vision (Lidar) and a vision sensor system. In the vision sensor system, a switch between sensors was made along the approach phase in order to provide continuously effective navigation. As an extension of the rendezvous laser vision system, an automated terminal guidance scheme based on the Clohessy-Wiltshire state transition matrix was used to formulate a "V-bar hopping approach" reference trajectory. A proximity operations strategy was then adapted from the approach strategy used with the automated transfer vehicle. The attitude maneuvers, determined from a linear quadratic Gaussian-type control including quaternion based attitude estimation using star trackers or a vision sensor system, provided precise attitude control and robustness under uncertainties in the moments of inertia and external disturbances. These functions were then integrated into an autonomous GNC system that can perform proximity operations and meet all conditions for successful docking. A six-degree of freedom simulation was used to demonstrate the effectiveness of the integrated system.

Laser-based Relative Navigation Using GPS Measurements for Spacecraft Formation Flying

  • Lee, Kwangwon;Oh, Hyungjik;Park, Han-Earl;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권4호
    • /
    • pp.387-393
    • /
    • 2015
  • This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than $0.001^{\circ}$ at relative distances greater than 30 km.

Observability Analysis of Alignment Errors in GPS/INS

  • Lee Mun Ki;Hong Sinpyo;Lee Man Hyung;Kwon Sun-Hong;Chun Ho-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1253-1267
    • /
    • 2005
  • Misalignment can be an important problem in the integration of GPS/INS. Observability analysis of the alignment errors in the integration of low-grade inertial sensors and multi-antenna GPS is presented in this paper. A control-theoretic approach is adopted to study the observability of time-varying error dynamics models. The relationship between vehicle motions and the observability of the errors in the lever arm and relative attitude between GPS antenna array and IMU is given. It is shown that alignment errors can be made observable through maneuvering. The change of acceleration makes the components of the relative attitude error that are orthogonal to the direction of the acceleration change observable. The change of angular velocity makes the components of the lever arm error that are orthogonal to the direction of the angular velocity observable. The motion of constant angular velocity has no influence on the estimation of the lever arm.

유연성을 가지는 비행체를 위한 속도/방위각 정합 전달 정렬 알고리즘 설계 (Design of Transfer Alignment Algorithm with Velocity and Azimuth Matching for the Aircraft Having Wing Flexibility)

  • 강석태
    • 한국군사과학기술학회지
    • /
    • 제26권3호
    • /
    • pp.214-226
    • /
    • 2023
  • A transfer alignment is used to initialize, align, and calibrate a SINS(Slave INS) using a MINS(Master INS) in motion. This paper presents an airborne transfer alignment with velocity and azimuth matching to estimate inertial sensor biases under the wing flexure influence. This study also considers the lever arm, time delay and relative orientation between MINS and SINS. The traditional transfer alignment only uses velocity matching. In contrast, this paper utilizes the azimuth matching to prevent divergence of the azimuth when the aircraft is stationary or quasi-stationary since the azimuth is less affected by the wing flexibility. The performance of the proposed Kalman filter is analyzed using two factors; one is the estimation performance of gyroscope and accelerometer bias and the other is comparing aircraft dynamics and attitude covariance. The performance of the proposed filter is verified using a long term flight test. The test results show that the proposed scheme can be effectively applied to various platforms that require airborne transfer alignment.