• 제목/요약/키워드: Related Keywords

검색결과 952건 처리시간 0.024초

시문분석을 통한 영남루의 경관 특징에 관한 연구 (Landscape Characteristics of Youngnam-Lu through the Analysis of Poetry)

  • 안계복
    • 한국전통조경학회지
    • /
    • 제32권1호
    • /
    • pp.1-9
    • /
    • 2014
  • 본 연구는 밀양 영남루가 갖고 있는 경관적인 특징을 밝히기 위해 영남루와 관련된 354편의 시문에 대한 핵심어(keyword)분석과 시문 요소 분석, 그리고 보조적으로 CAD를 활용한 지형분석과 고지도 분석을 한 결과는 다음과 같다. 영남루 시문에 대한 핵심어를 분석해 보면 명승이 56회, 장강(長江)과 장림(長林)이 39회, 최고 제일경관이 31회, 큰 들판 조망경관이 19회, 천겹 산악경관이 14회로 나타났는데, 이것을 모두 합치면 159회로 전체 시문의 44.9%에 해당한다. 영남루 시문에 나타난 자연요소를 분석해 본 결과 자연현상(44%), 지형(33%), 식물(14%), 동물(9%) 순이었는데, 자연현상 가운데에는 특히 하늘천(天)이41회로 제일 많았는데, 이것은 영남루의 '천(天)'의 경관이 뛰어나기 때문이다. 또 영남루 지형경관의 특징은 '강 흐름'과 '모래섬'이었다. 또한 영남루에서는 악기 출현빈도(8%)가 높아 다양한 악기를 공연하는 공간이었다. 이러한 특징들 때문에 영남루가 고려시대부터 제일가는 누각이라는 평가를 받아왔다.

빅 데이터를 이용한 임플란트에 대한 관심도 분석: 웹 기반 연구 (Analysis of interest in implant using a big data: A web-based study)

  • 공현준
    • 대한치과보철학회지
    • /
    • 제59권2호
    • /
    • pp.164-172
    • /
    • 2021
  • 목적: 본 연구는 구글 트렌드를 이용하여 일반적인 인터넷 사용자들이 치과 임플란트에 대해 가지고 있는 관심도를 분석하고, 관심도의 수준을 국민건강보험공단의 빅 데이터와 비교하기 위함이다. 재료 및 방법: 구글 트렌드는 검색 키워드에 대한 상대적 검색 볼륨을 제공하는데, 이것은 특정 기간 동안의 검색 빈도를 시각화하여 보여주는 평균 데이터이다. 임플란트를 검색어로 선정하여, 2015년에서 2019년까지의 일반적인 인터넷 사용자들의 관심도를 추세선과 6개월 이동평균선을 이용하여 분석하였다. 다음으로, 임플란트에 대한 상대적 검색 볼륨을 국민건강보험의 적용을 받아 임플란트를 식립한 환자 수의 변화와 함께 비교하였다. 임플란트와 전통적인 의치에 대한 상대적 관심도를 비교하였으며, 임플란트와 관련된 주요 연관 검색어를 분석하였다. 결과: 임플란트에 대한 상대적 검색 볼륨은 점진적으로 증가하였으며, 국민건강보험 혜택을 받은 환자 수와 유의한 양의 상관관계를 보였다 (P < .01). 임플란트에 대한 관심도는 모든 기간에 있어서 의치에 비해 높았다. 연관 검색어로는 임플란트 비용이 가장 빈번하게 관찰되었으며, 임플란트 과정에 대한 검색이 증가하였다. 결론: 본 제한된 연구의 결과를 근거로, 임플란트에 대한 대중의 관심은 점진적으로 증가하고 있으며, 관심의 세부 분야는 변하고 있다. 또한 웹 기반의 구글 트렌드 데이터를 전통적인 방식의 데이터와 비교한 결과, 유의한 상관관계를 확인할 수 있었다.

토픽모델링과 언어네트워크분석을 활용한 스마트팜 연구 동향 분석 (A Study on Research Trends in the Smart Farm Field using Topic Modeling and Semantic Network Analysis)

  • 오주연;이준명;홍의기
    • 디지털융복합연구
    • /
    • 제20권2호
    • /
    • pp.203-215
    • /
    • 2022
  • 본 연구의 목적은 토픽모델링과 언어네트워크분석을 활용하여 한국의 스마트팜 분야 연구 동향과 지식구조를 파악하는 것이다. 연구목적을 달성하기 위하여 KCI(Korea Citation Index)의 스마트팜 관련 국내 학술지 104편을 대상으로 핵심어와 핵심어들의 연결 관계를 분석하고, LDA 토픽모델링 기법을 이용하여 연구주제와 관련된 토픽들을 분석하였다. 언어네트워크분석 결과, 국내 스마트팜 관련 연구 분야의 주요핵심어는 '환경', '시스템', '사용', '기술', '재배' 등이 나타났으며, 연결중심성, 매개중심성, 위세중심성 결과도 제시하였다. 토픽모델링분석결과, Topic 1은 '스마트팜 도입 분석', Topic 2는 '친환경 스마트팜과 스마트팜의 경제적 효율성', Topic 3은 '스마트팜 플랫폼 설계', Topic 4는 '스마트팜 생산 최적화', Topic 5는 '스마트팜 생태계', Topic 6은 '스마트팜 시스템 구현', Topic 7은 '스마트팜 관련 정부 정책'으로 나타났다. 본 연구는 국내 스마트팜 관련 연구 동향을 살펴봄으로써, 향후 국내의 스마트팜을 발전시키는 데 필요한 정책개발과 연구 방향성을 설정하는데 기초자료가 될 것으로 기대한다.

키워드 네트워크 분석을 통해 살펴본 기술경영의 최근 연구동향 (A Study on Recent Research Trend in Management of Technology Using Keywords Network Analysis)

  • 고재창;조근태;조윤호
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.101-123
    • /
    • 2013
  • 최근 경제 패러다임의 변화로 인해 기업이 글로벌 경쟁우위 및 미래 성장동력 확보하기 위해서는 기술과 경영을 통합적으로 이해할 수 있는 학제적 지식을 바탕으로 기술연구의 동향을 파악하고 융합기술 및 유망기술 예측하여 지속적 혁신, 핵심역량 강화, 핵심기술 보유, 기술 융합 등을 통해 새로운 가치를 창출할 필요가 있다. 따라서 본 연구는 기술경영관련 연구의 거시적인 흐름을 분석하기 위해 동시단어 분석기반의 계량서지학적 방법론을 사용하였다. 즉, 최근 10년 동안 기술경영분야의 주요 해외 저널에 게재된 논문의 키워드를 수집한 다음, 빈도 분석, 초기 키워드 네트워크의 구조 분석, 시간이 지남에 따른 새로 생성된 키워드의 선호적 연결 및 성장 분석, 전체 네트워크에 대한 컴포넌트 분석 및 중심성 분석을 수행하였다. 이를 통해 기술경영분야의 논문에 대한 구체적인 연구 주제를 파악할 수 있고, 이들 간의 관계를 파악함으로써, 학제적 연구와 통섭을 위한 구체적인 연구주제들의 조합을 제시할 수 있다. 본 연구결과를 살펴보면 다음과 같다. 첫째, 논문 별 키워드는 1개~23개의 분포를 지니고 있으며, 평균적으로 논문 당 4.574개의 키워드가 있다. 또한 키워드 중 90%가 10년 동안 3번 이하로 사용되었다. 특히 1번만 사용된 키워드는 약 75%의 비중을 차지하고 있음을 확인하였다. 둘째, 키워드 네트워크는 좁은 세상 네트워크 및 척도 없는 네트워크의 특징을 따르고 있음을 확인하였다. 특히 기술경영관련 논문에 사용된 키워드 중 소수의 키워드의 독점화 경향이 높음을 확인할 수 있었다. 셋째, 선호적 연결 및 성장 분석을 통해 기술경영분야의 키워드는 시간이 지남에 따라 선호적 연결을 통한 생존과 소멸 과정에 의해 부익부 빈익빈 현상이 고착되고 있고 있음을 확인하였다. 또한 신규 키워드의 선호적 연결 정도 분석을 통해 신규 연구분야 또는 새로운 연구영역을 창출할 가능성이 있는 키워드 관련 연구 주제에 대한 관심이 시간이 지남에 따라 증가하다가 일정 시점이 지나면 감소함을 확인하였다. 넷째, 컴포넌트 분석 및 중심성 분석을 통해 기술경영관련 연구 동향을 확인하였다. 특히 중심성 분석을 통해 Innovation(혁신), R&D(연구개발), Patent(특허), Forecast(예측), Technology transfer(기술이전), Technology(기술), SME(중소기업) 등의 키워드가 연결중심성, 매개중심성, 근접중심성이 높음을 확인하였다. 본 연구의 분석결과는 기술경영의 연구 동향, 타 학문과의 통섭 및 신규 연구주제 선정 시 참고할 수 있는 유용한 정보로 활용될 수 있다.

연관규칙을 이용한 뉴스기사의 계층적 자동분류기법 (Hierarchical Automatic Classification of News Articles based on Association Rules)

  • 주길홍;신은영;이주일;이원석
    • 한국멀티미디어학회논문지
    • /
    • 제14권6호
    • /
    • pp.730-741
    • /
    • 2011
  • 인터넷과 컴퓨터 기술이 발전함에 따라 정보의 양이 폭발적으로 증가하였으며 사용자의 다양한 요구가 생겨나게 되었다. 이로 인해 대용량의 문서를 효과적으로 분류하기 위한 다양한 방법의 연구가 필요하게 되었다. 기존의 문서 범주화는 분서의 분류를 위해 연관된 문서의 키워드를 중심으로 하는 방법을 사용하였다. 그러나 본 논문에서는 연관규칙을 이용하여 범주 내의 문서들 간에 연관성 있는 키워드들의 집합을 추출하고 각 범주 별로 의미적으로 대표성을 가진 키워드들로 분류 규칙을 생성한다. 또한 효율적인 키워드 생성을 위한 데이터 전처리 방안을 제시하고, 새로운 문서 범주를 예측한다. 프로파일의 분류성능을 높이기 위한 분류함수를 설계하고 실험을 통하여 성능을 측정한다. 마지막으로 평면적인 범주 구조에서 확장하여 계층적인 분류체계 구조에서도 적용할 수 있는 자동분류 방안을 제시한다.

텍스트마이닝을 활용한 숭례문 관련 기사의 트렌드 분석 (Trend Analysis of News Articles Regarding Sungnyemun Gate using Text Mining)

  • 김민정;김철주
    • 한국콘텐츠학회논문지
    • /
    • 제17권3호
    • /
    • pp.474-485
    • /
    • 2017
  • 국보 제1호인 숭례문은 2008년 2월 10일 화재로 일부가 소실되었으나 화재 이후 복구 작업을 통해 2013년 5월 4일 시민에게 공개되었다. 이로 인해 숭례문은 국가적으로 큰 이슈가 되어 언론의 관심을 받으며 동시에 많은 연구의 대상이 되었다. 본 연구는 문화재로서 숭례문을 키워드로 하여 2002년부터 2016년까지 신문 기사에 대한 빈도분석을 통해 숭례문 관련 어떤 키워드들이 자주 나타나고 있는지에 대해 파악하였다. 또한 추출된 숭례문 관련 키워드들간 연관관계 분석을 통해 키워드간 연결의 맥락을 파악하고 분석하였다. 다음으로 숭례문 화재 전후, 언론사별 주요 키워드 추출을 통해 공통점과 차이점을 보여줌으로써 관점의 다양성을 제공하였다. 본 연구를 통해 문화재로서 숭례문 관련 키워드는 화재 이후에 나타난 키워드가 전체 기사에서 고빈도어로 나타남을 알 수 있었고 몇 가지 키워드간 상관관계가 높게 나타났다. 또한 화재 전후 키워드에는 명확한 차이를 보이고 있었으며 언론사별 키워드에서 상위 키워드들은 명확한 차이는 보여주지 않았지만 차상위 키워드들은 차이가 발생하여 언론사별로 주로 다루어진 기사들의 내용은 차이가 있다는 것을 발견했다. 본 연구는 문화재로서 숭례문 관련 기사에 대해 텍스트마이닝 기법을 활용하여 다량의 데이터를 분석하였음에 의미가 있으며 정보생산자 및 정보소비자들에게 숭례문 관련 기사의 동향과 정보를 제공할 수 있을 것이라 기대한다.

유전종양간호 관련 연구경향: 텍스트 네트워크 분석을 중심으로 (Research Trend of Genetics in Oncology Nursing: Based on Text Network Analysis)

  • 이미진;오순영;최경숙
    • 한국콘텐츠학회논문지
    • /
    • 제18권2호
    • /
    • pp.47-56
    • /
    • 2018
  • 본 연구는 국내 외의 종양유전간호 관련 연구를 분석하여 연구동향을 파악하고자 하였다. 종양유전간호 관련 주제로 학술지에 게재된 논문들의 초록에서 제시한 핵심어들을 중심으로 한 텍스트 네트워크 분석을 실시하였다. 핵심어이자 중심성이 높은 주제어로 Nurse, Cancer, Genetic, Patient, Knowledge, Care, Genetic Test 등이 확인되었으며, 시기별 연구동향을 확인한 결과, 2003년 이후 Information, Care, Knowledge 등의 주제어를 포함한 연구들이 증가하였다. 간호학의 메타 패러다임으로 주제어를 분류한 결과, 건강, 간호, 인간, 환경 순으로 중심성이 높게 나타났다. 건강 영역 중 건강 위험 범주에서 Genetics, Risk, 건강 증진 범주에서 Genetic Test, Prevention 등이 가장 높은 빈도로 나타났다. 본 연구를 통해 종양유전간호 연구의 동향을 파악할 수 있으며, 유전성 암 환자들을 위한 간호 중재에 주축이 되는 간호사의 역할 및 중재프로그램 개발의 방향 설정에 활용될 수 있다는 점에서 의미가 있다.

연관 키워드 기반의 지리 및 지역정보 검색시스템 : "경기21서치 2.0" (Gyeonggi21Search 2.0: A Geographic and Regional Information Retrieval System based on Correlated Keywords)

  • 윤성관;이용;장용희;성동현;권용진
    • Spatial Information Research
    • /
    • 제17권1호
    • /
    • pp.1-14
    • /
    • 2009
  • 웹에서 다양한 웹 지리 지역정보를 검색할 수 있는 시스템에 대한 요구가 증가하고 있다. 그러나 현재의 웹 검색 시스템은 사용자가 키워드로 지역 웹 문서를 검색하고 해당 웹 문서를 지도와 비교하여 공간정보를 취득하며, 다른 관련 정보를 얻기 위해서는 검색과 비교를 반복해야 하는 어려움이 있다. 본 논문에서는 이러한 검색 과정을 단순화하기 위해 웹 지리 지역정보에 포함된 지리공간단어를 활용하고 웹 정보와 공간정보가 유기적으로 통합된 검색시스템을 제안하였다. 이를 위해 현재의 웹 공간으로부터 "현실 지식 응용"이라는 3-계층 공간 모델을 제안하였다. 이 구조에서는 계층 간 정보가 관련성이 높도록 연결되어 있고, 사용자는 연결 구조를 탐험하는 것만으로 웹 지리 지역정보 및 지리적인 특성에 대한 다양한 관계 정보, 그리고 공간정보를 효율적으로 얻을 수 있었다.

  • PDF

연관 웹 페이지 검색을 위한 e-아크 랭킹 메저 (e-Cohesive Keyword based Arc Ranking Measure for Web Navigation)

  • 이우기;이병수
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권1호
    • /
    • pp.22-29
    • /
    • 2009
  • 웹은 사용자에게 제품이나 정보를 제공할 수 있는 가장 커다란 매체로 성장하였으며, 또한 사용자에게는 필요 이상의 정보를 얻게 해주고 있다. 웹은 다량의 관련 정보들을 여러 웹 페이지들을 통해 표현하고 있으며, 현재 검색엔진들은 키워드들에 관련된 단일 페이지들만을 리스트화하여 보여주고 있다. 근본적으로 이러한 방법들로는 관련된 정보를 가지고 있는 페이지들의 쌍 및 연관된 뭔 페이지들의 집합을 구조화하여 제공할 수 없다. 웹은 하나의 웹 페이지에 모든 관련 정보를 담는 범위를 넘어 관련된 정보 페이지들을 하이퍼링크로 서로 연결한 일련의 정보로 인식되고 있다. 따라서 본 논문에서는 새로운 링크 가중치 기반 검색 기법으로서 e-아크 메저에 관하여 제안하고자 하며, 이는 사용자가 입력한 키워드들과 관련된 페이지의 집합을 웹 사이트 안에서 찾아내는 연관 검색에 효과적이라는 것을 보이고, 실험을 통해 기존의 메저들 보다 그 효과성을 우월하다는 점을 입증하였다.

MEDLINE 검색을 통한 산업안전보건 분야에서의 인간공학 연구동향 : 워드임베딩을 활용한 초록 단어 모델링을 중심으로 (Research Trends of Ergonomics in Occupational Safety and Health through MEDLINE Search: Focus on Abstract Word Modeling using Word Embedding)

  • 김준희;황의재;안선희;곽경태;정성훈
    • 한국안전학회지
    • /
    • 제36권5호
    • /
    • pp.61-70
    • /
    • 2021
  • This study aimed to analyze the research trends of the abstract data of ergonomic studies registered in MEDLINE, a medical bibliographic database, using word embedding. Medical-related ergonomic studies mainly focus on work-related musculoskeletal disorders, and there are no studies on the analysis of words as data using natural language processing techniques, such as word embedding. In this study, the abstract data of ergonomic studies were extracted with a program written with selenium and BeutifulSoup modules using python. The word embedding of the abstract data was performed using the word2vec model, after which the data found in the abstract were vectorized. The vectorized data were visualized in two dimensions using t-Distributed Stochastic Neighbor Embedding (t-SNE). The word "ergonomics" and ten of the most frequently used words in the abstract were selected as keywords. The results revealed that the most frequently used words in the abstract of ergonomics studies include "use", "work", and "task". In addition, the t-SNE technique revealed that words, such as "workplace", "design", and "engineering," exhibited the highest relevance to ergonomics. The keywords observed in the abstract of ergonomic studies using t-SNE were classified into four groups. Ergonomics studies registered with MEDLINE have investigated the risk factors associated with workers performing an operation or task using tools, and in this study, ergonomics studies were identified by the relationship between keywords using word embedding. The results of this study will provide useful and diverse insights on future research direction on ergonomic studies.