• Title/Summary/Keyword: Reissner-Mindlin plate

Search Result 51, Processing Time 0.025 seconds

hp-Version of the Finite Element Analysis for Reissner-Mindlin Plates (Reissner-Mindlin 평판의 hp-Version 유한요소해석)

  • Woo, Kwang Sung;Lee, Gee Doug;Ko, Man Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.151-160
    • /
    • 1993
  • This paper is concerned with formulations of the hierarchical $C^{\circ}$-plate element on the basis of Reissner-Mindlin plate theory. On reason for the development of the aforementioned element based on Integrals of Legendre shape functions is that it is still difficult to construct elements based on h-version concepts which are accurate and stable against the shear locking effects. An adaptive mesh refinement and selective p-distribution of the polynomial degree using hp-version of the finite element method are proposed to verify the superior convergence and algorithmic efficiency with the help of the simply supported L-shaped plate problems.

  • PDF

Bilinear plate bending element for thin and moderately thick plates using Integrated Force Method

  • Dhananjaya, H.R.;Nagabhushanam, J.;Pandey, P.C.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.43-68
    • /
    • 2007
  • Using the Mindlin-Reissner plate theory, many quadrilateral plate bending elements have been developed so far to analyze thin and moderately thick plate problems via displacement based finite element method. Here new formulation has been made to analyze thin and moderately thick plate problems using force based finite element method called Integrated Force Method (IFM). The IFM is a novel matrix formulation developed in recent years for analyzing civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper the force based new bilinear quadrilateral plate bending element (MQP4) is proposed to analyze the thin and moderately thick plate bending problems using Integrated Force Method. The Mindlin-Reissner plate theory has been used in the formulation of this element which accounts the effect of shear deformation. Standard plate bending benchmark problems are analyzed using the proposed element MQP4 via Integrated Force Method to study its performance with respect to accuracy and convergence, and results are compared with those of displacement based 4-node quadrilateral plate bending finite elements available in the literature. The results are also compared with the exact solutions. The proposed element MQP4 is free from shear locking and works satisfactorily in both thin and moderately thick plate bending situations.

New twelve node serendipity quadrilateral plate bending element based on Mindlin-Reissner theory using Integrated Force Method

  • Dhananjaya, H.R.;Nagabhushanam, J.;Pandey, P.C.;Jumaat, Mohd. Zamin
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.625-642
    • /
    • 2010
  • The Integrated Force Method (IFM) is a novel matrix formulation developed for analyzing the civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. This paper presents a new 12-node serendipity quadrilateral plate bending element MQP12 for the analysis of thin and thick plate problems using IFM. The Mindlin-Reissner plate theory has been employed in the formulation which accounts the effect of shear deformation. The performance of this new element with respect to accuracy and convergence is studied by analyzing many standard benchmark plate bending problems. The results of the new element MQP12 are compared with those of displacement-based 12-node plate bending elements available in the literature. The results are also compared with exact solutions. The new element MQP12 is free from shear locking and performs excellent for both thin and moderately thick plate bending situations.

New nine-node Lagrangian quadrilateral plate element based on Mindlin-Reissner theory using IFM

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.;Ibrahim, Zainah
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.205-229
    • /
    • 2012
  • This paper presents a new nine-node Lagrangian quadrilateral plate bending element (MQP9) using the Integrated Force Method (IFM) for the analysis of thin and moderately thick plate bending problems. Three degrees of freedom: transverse displacement w and two rotations ${\theta}_x$ and ${\theta}_y$ are considered at each node of the element. The Mindlin-Reissner theory has been employed in the formulation which accounts the effect of shear deformation. Many standard plate bending benchmark problems have been analyzed using the new element MQP9 for various grid sizes via Integrated Force Method to estimate defections and bending moments. These results of the new element MQP9 are compared with those of similar displacement-based plate bending elements available in the literature. The results are also compared with exact solutions. It is observed that the presented new element MQP9 is free from shear locking and produced, in general, excellent results in all plate bending benchmark problems considered.

Topology optimization of Reissner-Mindlin plates using multi-material discrete shear gap method

  • Minh-Ngoc Nguyen;Wonsik Jung;Soomi Shin;Joowon Kang;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.365-374
    • /
    • 2023
  • This paper presents a new scheme for constructing locking-free finite elements in thick and thin plates, called Discrete Shear Gap element (DSG), using multiphase material topology optimization for triangular elements of Reissner-Mindlin plates. Besides, common methods are also presented in this article, such as quadrilateral element (Q4) and reduced integration method. Moreover, when the plate gets too thin, the transverse shear-locking problem arises. To avoid that phenomenon, the stabilized discrete shear gap technique is utilized in the DSG3 system stiffness matrix formulation. The accuracy and efficiency of DSG are demonstrated by the numerical examples, and many superior properties are presented, such as being a strong competitor to the common kind of Q4 elements in the static topology optimization and its computed results are confirmed against those derived from the three-node triangular element, and other existing solutions.

Analysis of Laminated Composite Stiffened Plates with arbitrary orientation stiffener (임의방향 보강재를 가지는 복합적층 보강판의 해석)

  • Yhim, Sung-Soon;Chang, Suk-Yoon;Park, Dae-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.147-158
    • /
    • 2004
  • For stiffened plates composed of composite materials, many researchers have used a finite element method which connected isoparametric plate elements and beam elements. However, the finite element method is difficult to reflect local behavior of stiffener because beam elements are transferred stiffness for nodal point of plate elements, especially the application is limited in case of laminated composite structures. In this paper, for analysis of laminated composite stiffened plates, 3D shell elements for stiffener and plate are employed. Reissner-Mindlin's first order shear deformation theory is considered in this study. But when thickness will be thin, isoparamatric plate bending element based on the theory of Reissner-Mindlin is generated by transverse shear locking. To eliminate the shear locking and virtual zero energy mode, the substitute shear strain field is used. A deflection distribution is investigated for simple supported rectangular and skew stiffened laminated composite plates with arbitrary orientation stiffener as not only variation of slenderness and aspect ratio of the plate but also variation of skew angle of skew stiffened plates.

A geometrically nonlinear thick plate bending element based on mixed formulation and discrete collocation constraints

  • Abdalla, J.A.;Ibrahim, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.725-739
    • /
    • 2007
  • In recent years there are many plate bending elements that emerged for solving both thin and thick plates. The main features of these elements are that they are based on mix formulation interpolation with discrete collocation constraints. These elements passed the patch test for mix formulation and performed well for linear analysis of thin and thick plates. In this paper a member of this family of elements, namely, the Discrete Reissner-Mindlin (DRM) is further extended and developed to analyze both thin and thick plates with geometric nonlinearity. The Von K$\acute{a}$rm$\acute{a}$n's large displacement plate theory based on Lagrangian coordinate system is used. The Hu-Washizu variational principle is employed to formulate the stiffness matrix of the geometrically Nonlinear Discrete Reissner-Mindlin (NDRM). An iterative-incremental procedure is implemented to solve the nonlinear equations. The element is then tested for plates with simply supported and clamped edges under uniformly distributed transverse loads. The results obtained using the geometrically NDRM element is then compared with the results of available analytical solutions. It has been observed that the NDRM results agreed well with the analytical solutions results. Therefore, it is concluded that the NDRM element is both reliable and efficient in analyzing thin and thick plates with geometric non-linearity.

Buckling of thin-walled members analyzed by Mindlin-Reissner finite strip

  • Cuong, Bui H.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.77-91
    • /
    • 2013
  • The paper presents the formulation of 3-nodal line semi-analytical Mindlin-Reissner finite strip in the buckling analysis of thin-walled members, which are subjected to arbitrary loads. The finite strip is simply supported in two opposite edges. The general loading and in-plane rotation techniques are used to develop this finite strip. The linear stiffness matrix and the geometric stiffness matrix of the finite strip are given in explicit forms. To validate the proposed model and study its performance, numerical examples of some thin-walled sections have been performed and the results obtained have been compared with finite element models and the published ones.

Thermal postbuckling of imperfect Reissner-Mindlin plates with two free side edges and resting on elastic foundations

  • Shen, Hui-Shen
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.643-658
    • /
    • 1998
  • A thermal postbuckling analysis is presented for a moderately thick rectangular plate subjected to uniform or nonuniform tent-like temperature loading and resting on an elastic foundation. The plate is assumed to be simply supported on its two opposite edges and the two side edges remain free. The initial geometrical imperfection of the plate is taken into account. The formulation are based on the Reissner-Mindlin plate theory considering the first order shear deformation effect, and including plate-foundation interaction and thermal effects. The analysis uses a mixed Galerkin-perturbation technique to determine the thermal buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, moderately thick plates resting on Pasternak-type or softening nonlinear elastic foundations from which results for Winker elastic foundations follow as a limiting case. Typical results are presented in dimensionless graphical form.

New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.485-502
    • /
    • 2009
  • A new 8-node serendipity quadrilateral plate bending element (MQP8) based on the Mindlin-Reissner theory for the analysis of thin and moderately thick plate bending problems using Integrated Force Method is presented in this paper. The performance of this new element (MQP8) is studied for accuracy and convergence by analyzing many standard benchmark plate bending problems. This new element MQP8 performs excellent in both thin and moderately thick plate bending situations. And also this element is free from spurious/zero energy modes and free from shear locking problem.