• Title/Summary/Keyword: Reinforcing material

Search Result 540, Processing Time 0.029 seconds

Nonlinear Finite Element Analysis on the Transmission of Column Loads through Slab-Column Connections

  • Lee, Joo-Ha;Yoon, Young-Soo;Sohn, Yu-Shin;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.466-469
    • /
    • 2006
  • This paper presents the structural characteristics of slab-column connections by using nonlinear finite element analysis. FEA considering material non-linearity was performed to investigate average column strain, failure mode, principal stress distribution, and steel yielding conditions for various slab-column members. In addition, to investigate alternative methods for improving the strength of interior column-slab joints, some specimens were provided with different reinforcing types of high-strength concrete puddling, high-strength column longitudinal steels, dowel bars, and high-strength concrete core. To make certain of the reliability of the analytical program, analysis results for concrete material model developed and two specimens with and without puddling were compared with experimental results. It was found that providing the alternative reinforcing methods in the slab-column joint results in a significant improvement in performance. This includes an increase in the axial compressive strength, greater loading stiffness, and ductility.

  • PDF

Nonlinear dynamic analysis of reinforced concrete shell structures

  • Kim, T.H.;Park, J.G.;Choi, J.H.;Shin, H.M.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.685-702
    • /
    • 2010
  • In this paper, a nonlinear finite element procedure is presented for the dynamic analysis of reinforced concrete shell structures. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A 4-node flat shell element with drilling rotational stiffness was used for spatial discretization. The layered approach was used to discretize the behavior of concrete and reinforcement in the thickness direction. Material nonlinearity was taken into account by using tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach was incorporated. The low-cycle fatigue of both concrete and reinforcing bars was also considered to predict a reliable dynamic behavior. The solution to the dynamic response of reinforced concrete shell structures was obtained by numerical integration of the nonlinear equations of motion using Hilber-Hughes-Taylor (HHT) algorithm. The proposed numerical method for the nonlinear dynamic analysis of reinforced concrete shell structures was verified by comparison of its results with reliable experimental and analytical results.

A Study on Electrostatic Degradation Properties of Silicone Rubber due to Reinforcing Agent (보강제 변화에 따른 실리콘 고무의 정전기 열화 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.120-125
    • /
    • 2015
  • In this study, we have come to the following conclusions regarding to the electrification properties (electrostatic electrification voltage and electrification relaxation time) of electrostatics in the three type of specimen (size: $4cm{\times}4cm{\times}0.103cm$) of silicone rubber which is mixed with the ATH (Aluminium Trihydrate(Al($OH_3$)) of 30 phr, 60 phr, 120 phr as reinforcing filler. The electrification properties of electrostatics were measured for the different mixing ratio of ATH with the applied voltage of DC 10 kV at the temperature range of $10^{\circ}C{\sim}30^{\circ}C$ and humidity range of 60%~80%. When the temperature remained constant, the electrical resistance decreased as the humidity increasing in the range of 60%, 70%, 80%. In contrast, when the humidity remained constant, the electrical resistance increased as the temperature increasing in the range of $10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$. Regarding these results, may be it is because the absorption of O-H molecule appeared in the silicone specimen. It was confirmed that when the temperature remained constant, the electrification relaxation time decreased as the humidity increased. In contrast, when the humidity remained constant, the electrification relaxation time increased as the temperature increased.

Field Measurements with the Construction of Cut and Cover Tunnel (복개 터널구조물의 현장 시공에 따른 계측 분석 사례)

  • 박시현;이석원;이규필;배규진;전오성;이종성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.149-156
    • /
    • 2002
  • Field measurements were carried out in this study to investigate the behavior of cut and cover tunnel such as the distribution and the magnitude of the earth pressure during back fill process of the ground material. Three kinds of measuring instruments, such as the earth pressure load cell, the concrete strain gauge and the reinforcing bar meter of embedded type in concrete structure were installed and measured. Earth pressure load cells, installed after construction of the tunnel lining, measure the outside forces acting on the tunnel lining with radial directions. Three load cells were installed at the crown, the right and the left shoulder of the tunnel, respectively. Three sets of reinforcing bar meter were installed in the double reinforcements of the tunnel lining and their locations were the same with the position of the earth pressure load cells. Concrete strain gauge was installed only one site of the upper compressive part at the tunnel crown. Based on the measuring results in the field, the deformation and the earth pressure acting on the tunnel lining were investigated with the back fill process of the ground material. Considerations on the validity of the measuring results were paid. For the analysis of measurements, after dividing back fill process into three steps, various factors which affect on the behavior of tunnel lining were investigated at each step.

  • PDF

Wear of contemporary dental composite resin restorations: a literature review

  • Dimitrios Dionysopoulos;Olga Gerasimidou
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.2
    • /
    • pp.18.1-18.13
    • /
    • 2021
  • Composite resins are the most commonly used dental restorative materials after minimally invasive dental procedures, and they offer an aesthetically pleasing appearance. An ideal composite restorative material should have wear properties similar to those of tooth tissues. Wear refers to the damaging, gradual loss or deformation of a material at solid surfaces. Depending on the mechanism of action, wear can be categorized as abrasive, adhesive, fatigue, or corrosive. Currently used composite resins cover a wide range of materials with diverse properties, offering dental clinicians multiple choices for anterior and posterior teeth. In order to improve the mechanical properties and the resistance to wear of composite materials, many types of monomers, silane coupling agents, and reinforcing fillers have been developed. Since resistance to wear is an important factor in determining the clinical success of composite resins, the purpose of this literature review was to define what constitutes wear. The discussion focuses on factors that contribute to the extent of wear as well as to the prevention of wear. Finally, the behavior of various types of existing composite materials such as nanohybrid, flowable, and computer-assisted design/computer-assisted manufacturing materials, was investigated, along with the factors that may cause or contribute to their wear.

Tensile Properties of CFRP Rod and U Type Anchor manufactured by UCAS Method (UCAS 공법에 의해서 제작된 CFRP rod와 U형 앵커의 인장특성)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.309-315
    • /
    • 2006
  • Important material properties of UCAS rod can divide by tension characteristic of base rod part and both end part of U type anchor. Tensile properties of base rod part need as concrete reinforcement material as an alternative material of reinforcing rod, and tensile properties of U type anchor is used at connection with UCAS rod. This treatise carry out tensile test of UCAS rod, examine necessary properties such as strength, elastic modulus and maximum capacity of UCAS rod as reinforcement material of concrete. Also, to examine material properties carry out tensile test of U type anchor.

  • PDF

State-of-the-Art Review of Ferro-cement Boat (Ferro-cement Boat 건조 보고)

  • Sun-Young,Pak
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.1
    • /
    • pp.103-118
    • /
    • 1971
  • Ferro-cement is a composite material made of portland cement mortar and wire(or chicken wire) reinforcement. In most cases, as a shipbuilding material, reinforcing steel rods and steel pipes are also used. This report will review the technique of ferro-cement boat building and will guide the working details. Beyond these, this report will present some test results of the ferro-cement test pannels and will compare those with the other well known shipbuilding material. As a matter of fact ferro-cement application to the shipbuilding material is quite not a new theory. There were already lots of case studies and actual ship building applications. But the technique to do this is not easily available to the interested persons and amateur shipbuilders. Therefore this report will stress most its "state-of-the-art review" and give kind guidance in using ferro-cement as a shipbuilding material. For the more interested research worker, technical references as much as listable are printed in the bibliography section on this report.

  • PDF

A study on surface resistivity of GFRP reinforced precast slab track (유리섬유보강 슬래브의 표면저항특성 고찰)

  • Moon, Do-Young;Zi, Goang-Seup;Lee, Seung-Jung;Kim, Yoo-Bong;Baek, In-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2435-2438
    • /
    • 2011
  • Steel bar is used for as a reinforcing material in a concrete slab track. Bacuase the steel re-bar could provide passes for current transition, all the cross points of steel re-bars should be insulated by using plastic materials. This is due to the loss of signal intensity of track-circuit. In this study, GFRP bars are adopted in place of the traditional steel reinforcing bars for a concrete slab track to minimize the loss of the signal intensity. In order to evaluate the replacing effect on eletrical characteristic of slab track, measurements of surface resistivity are conducted on steel and GFRP reinforced precast slab tracks. In the results, the GFRP reinforced slab strack shows the higher resistivity than the steel reinforced slab track.

  • PDF

Fatigue Damage of Reinforced Concrete Bridge Columns Subjected to Cyclic Load (반복하중을 받는 철근콘크리트 교각의 피로손상)

  • 김태훈;김운학;신현목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.99-104
    • /
    • 2002
  • This paper presents an analytical prediction of the fatigue damage of reinforced concrete bridge columns subjected to cyclic load. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. The proposed numerical method for fatigue damage of reinforced concrete bridge columns subjected to cyclic load is verified by comparison with reliable experimental results.

  • PDF

A Study on Strength Effect of Timber Beam with Inserting CFRP Plate (탄소섬유판 삽입공법에 의한 목재보 보강효과에 관한 연구)

  • Yu, Hye-Ran;Jung, Won-Chul;Choi, Min-Seok;Kwon, Ki-Hyuk
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.41-44
    • /
    • 2007
  • In repairing and reinforcing modem architecture, altering the features must be minimized. We concluded that inserting CFRP(Carbon Fiber Reinforcement Polymer) plate method is the most appropriate reinforcing method that minimize altering the features. This study focuses on the effect of reinforcement by inserting CFRP plate in the timber beam of the modem architecture's roof truss. We concluded that inserting CFRP plate method is highly influenced by its parent material, however, it is obvious that materials had reinforced by this method in general. We guess that this method is applicable to reinforcement in the modern architecture's roof truss in various ways.

  • PDF