• Title/Summary/Keyword: Reinforcing bar

Search Result 491, Processing Time 0.023 seconds

Computation of stress-deformation of deep beam with openings using finite element method

  • Senthil, K.;Gupta, A.;Singh, S.P.
    • Advances in concrete construction
    • /
    • v.6 no.3
    • /
    • pp.245-268
    • /
    • 2018
  • The numerical investigations have been carried out on deep beam with opening subjected to static monotonic loading to demonstrate the accuracy and effectiveness of the finite element based numerical models. The simulations were carried out through finite element program ABAQUS/CAE and the results thus obtained were validated with the experiments available in literature. Six simply supported beams were modelled with two square openings of 200 and 250 mm sides considered as opening at centre, top and bottom of the beam. In order to define the material behaviour of concrete and reinforcing steel bar the Concrete Damaged Plasticity model and Johnson-Cook material parameters available in literature were employed. The numerical results were compared with the experiments in terms of ultimate failure load, displacement and von-Mises stresses. In addition to that, seventeen beams were simulated under static loading for studying the effect of opening location, size and shape of the opening and depth, span and shear span to depth ratio of the deep beam. In general, the numerical results accurately predicted the pattern of deformation and displacement and found in good agreement with the experiments. It was concluded that the structural response of deep beam was primarily dependent on the degree of interruption of the natural load path. An increase in opening size from 200 to 250 mm size resulted in an average shear strength reduction of 35%. The deep beams having circular openings undergo lesser deflection and thus they are preferable than square openings. An increase in depth from 500 mm to 550 mm resulted in 78% reduced deflection.

A Study on the Development of a Dry PFB Method with High Fire Resistance (건식화 P0SCO E&C Fire Board (PFB)공법 개발에 관한 연구)

  • Kim, Woo-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.953-956
    • /
    • 2008
  • The present study was to develop a dry PFB method similar to the existing gypsum board construction method in order to apply the existing wet PFB method that uses fire.resistant adhesive. It was found that the existing wet method can produce concrete compressive strength of 80MPa and fire resistance of 3 hours with 30mm PF boards. The goal of development in this study was fire resistance of 3 hours through dry construction of 15mm fire.resistant boards.According to the results of fire resistance test, when the dry PF method was applied, the temperature of the main reinforcing bar was 116$^{\circ}$C in 15mm, 103.8$^{\circ}$C in 20mm, and 94$^{\circ}$C in 25mm, and these results satisfied the current standards for fire resistance control presented by the Ministry of Land, Transport and Maritime Affairs. When a 3.hour fire resistance test was performed and the external properties of the specimen were examined, the outermost gypsum board hardly remained and internal PF board maintained its form without thermal strain.

  • PDF

An Experimental Study on the Mechanical Properties of Porous Concrete Using Coal Ash and Polymer (석회석 골재를 사용한 강섬유보강 포러스콘크리트의 강도특성에 관한 실험적 연구)

  • Lee, Byung-Jae;Park, Seong-Bum;Jang, Young-Il;Jeon, Heum-Jin;Lee, Taek-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.685-688
    • /
    • 2008
  • Concrete is strong on the compressive property, but weak on the tensile and flexural properties. To improve these problems, the reinforcing bar is used in concrete. But porous concrete with steel fiber has a weak point when exposed to air, because porous concrete has the vast continuous void on its inside and steel fiber is easily rusted by air. For these reasons, this study investigated the void ratio, compressive strength, bending strength and bending toughness as steel fiber mixing ratio and target void ratio. From test results, actual void ratio and strength properties increased as the mixing ratio of steel fiber increase. In case the mixing ratio of steel fiber over the fixed ratio, strength is decreased. And from the toughness evaluation, compared to the porous concrete which isn't mixed with steel fiber, the deflection variation efficiency is remarkably improved. Consequently we can confirm the possibility of porous concrete with steel fiber for the secondary product and pavement material to improve strength and bending resistance efficiency.

  • PDF

Shear Failure Modes of Reinforced Concrete Members with High-Strength Materials (고강도 재료가 사용된 철근콘크리트 부재의 전단파괴모드)

  • Lee, Jung-Yoon;Kim, Kyung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.53-60
    • /
    • 2006
  • The shear failure modes of reinforced concrete members using high-strength materials (high-strength concrete and high-strength steel) are different to those of reinforced concrete members using normal-strength materials. The reinforced concrete members using high-strength materials are inclined to fail due to concrete crushing before the shear reinforcing bar reaches its yield strength. This paper presents an evaluation equation to calculate the maximum shear reinforcement ratio based on the material stresses and strains when the reinforced concrete members fail in shear. The maximum shear reinforcement ratio calculated by the proposed equation increases as the compressive strength of concrete increases. Test results of 97 reinforced concrete members reported in the technical literatures are used to check the validity of the proposed equation. The comparison between the test results and the ratio calculated using the proposed equation indicated that the shear failure modes depended on the interaction between the amount of shear reinforcement and the compressive strength of concrete.

  • PDF

Experimental analysis for the effect of integrated pipe-roof in trenchless method (비개착 일체형 파이프루프 지보효과의 실험적 분석)

  • Sim, Youngjong;Jin, Kyu-Nam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.377-387
    • /
    • 2016
  • In recent, in case that the underpass is constructed by trenchless method, its stability increases by reinforcing steel pipe with re-bar and mortar after propulsion into the ground to form pipe-roof. Therefore, it can be predicted that the integrated pipe-roof decreases the stress acting on the underpass by sharing load. In this study, to analyze the effect of integrated pipe-roof and behavior of stress around underpass, experimental tests for the rectangular and arch cross section of the underpass are performed using soil chamber. As a result, stress and strain acting on the underpass decrease due to sharing load by integrated pipe-roof. This phenomenon is more pronounced by increasing the stiffness of pipe-roof. Furthermore it can be expected that cross-section of underpass can be economically designed.

Longitudinal Elongation of Slender Reinforced Concrete Beams Subjected to Cyclic Loading (주기하중을 받는 세장한 철근콘크리트 보의 길이방향 인장변형)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.785-796
    • /
    • 2008
  • Longitudinal elongation develops in reinforced concrete beams that exhibit flexural yielding during cyclic loading. The longitudinal elongation can decrease the shear strength and deformation capacity of the beams. In the present study, nonlinear truss model analysis was performed to study the elongation mechanism of reinforced concrete beams. The results showed that residual tensile plastic strain of the longitudinal reinforcing bar in the plastic hinge is the primary factor causing the member elongation, and that the shear-force transfer mechanism of diagonal concrete struts has a substantial effect on the magnitude of the elongation. Based on the analysis results, a simplified method for evaluating member elongation was developed. The proposed method was applied to test specimens with various design parameters and loading conditions.

Structural Behavior of Pre-loaded RC Beams Strengthened by SP, CFS, and CFL (재하상태에서 보강된 철근 콘크리트보의 보강 재료에 따른 구조적 거동)

  • Chung, Lan;Lee, Young-Jea;Moon, Heui-Jeung;Lee, Kyung-Un;Jung, Sang-Jin
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.201-208
    • /
    • 1999
  • In recent years, strengthening by steel plate, carbon fiber sheets, and carbon fiber laminate is spotlighted in order to repair and rehabilitation of R/C structures. In this study, 3 methods of rehabilitation technique were analyzed from the test results. Test parameters were the width of cracks, the method of repair and rehabilitation, the magnitude of pre-load. Deflections, failure loads, strains of reinforcing bar, strains of carbon fiber sheet, carbon fiber laminate and steel plate were measured during the tests. The primary purpose of this research was to analyze the failure mode and structural behavior of strengthened RC beams with/without superimposed pre-load. Test results should that no significant difference was observed between with pre-loaded specimens and no-loaded specimens during rehabilitation.

Numerical Modelling on the Strength of Reinforced Concrete Simple-Continuous Deep Beams with Openings by an Upper-Bound Theorem (상계치 이론을 이용한 개구부를 갖는 철근콘크리트 단순·연속 깊은 보 내력의 수치해석 모델)

  • Yang, Keun-Hyeok;Eun, Hee-Chang;Chung, Heon-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.469-477
    • /
    • 2006
  • Models to predict the ultimate strength of simply supported or continuous deep beams with web openings are proposed. The derived equations are based on upper-bound theorem. The concrete is assumed as a perfectly plastic material obeying the modified Coulomb failure criteria with zero tension cutoff. Reinforcing bar is considered as elastic-perfectly plastic material and its stress is calculated from the limiting principal compressive strain of concrete. The governing failure mechanisms based on test results are idealized as rigid moving blocks separated by a hyperbolic yield line. The effective compressive strength of concrete is calculated from the formula proposed by Vecchio and Collins. Comparisons with existing test results are performed, and they show good agreement.

Development of Protection Techniques for Explosive Demolition of RC Pillar (철근콘크리트 기둥 발파해체를 위한 방호기술 연구)

  • Chang Ha Ryu;Byung Hee Choi;Yang Kyun Kim
    • Explosives and Blasting
    • /
    • v.20 no.4
    • /
    • pp.17-28
    • /
    • 2002
  • Safety concern is one of the most important parameters in the design of building demolition by explosive blasting, Accidents were sometimes reported due to the flying chips of fragmented materials In building demolition work in urban area. Laboratory experiments were performed to investigate the failure behavior of reinforced concrete pillars under blast loading and to develop an effective protection technique. Sixteen reinforced concrete pillars were constructed. The failure behavior and the flying chip velocities were observed by means of a high-speed camera. Protection scheme was designed and the effects of several protection materials were investigated. Two kinds of non-woven fabrics and wire net were tested as protection materials. The results showed that reinforcing bar was one of the important factors to determine specific charges, and that mesh size of wire net and tied-up method affected the protection of flying chips. Control of gas effects is also a key to the control of flying chips. It was recommended to use both wire net and non-woven fabrics as primary and secondary protection materials. Such protection scheme was successfully applied to the explosive demolition of apartment buildings.

An Experimental Study on Bending Behaviour of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 휨거동에 관한 실험적 연구)

  • Shin, Hyun Seop;Lee, Chin Hyung;Park, Ki Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.68-77
    • /
    • 2012
  • The joint of existing steel grid composite deck is composed of lap splice of reinforcing bar with end hooks and field-placed concrete. In this study, bending tests of deck joint composed of concrete shear key and high tension bolts are carried out for the design variable, concrete shear key strengthened with steel plate or not, and test results are compared with flexural performance of the existing deck joint. Test results showed that the mechanical deck joint has about 30% ~ 60% more ultimate bending strength than the existing joint. According to analysis results of moment-curvature relationship, the initial bending stiffness of the existing deck joint is some higher than that of mechanical joint. But, after crack failure the structural performance of the existing deck joint is rapidly reduced. Furthermore, the deck joint with the strengthened shear key with steel plate has more bending moment capacity than the deck joint without strengthening. And strengthening of shear key has positive influence on the increase of bending stiffness.