• Title/Summary/Keyword: Reinforcing Rib

Search Result 49, Processing Time 0.024 seconds

Study on the Development Design Criteria of High Relative Rib Area bars (높은 마디면적비 철근의 부착강도에 따른 정착설계 연구)

  • Park, Sung-Gyu;Hong, Geon-Ho;Choi, Oan-Chul;Hong, Gi-Suop
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.270-273
    • /
    • 2006
  • Bond between reinforcing bar and the surrounding concrete is made up of three components. There are chemical adesion, friction, and mechanical interaction between the rib of the bar and the surrounding concrete. bond of deformed bars depends primarily on the beraing of rib deformation anainst the surrounding concrete. The final objective of the study is to enhance structural stability, and workability thorough increasing the bond strength between deformed bar and surrounding concrete. The results of this study will be used to shorten bond and development length by $20{\sim}30$ percent and it will facilitate to use of high strength and high-relative rib area bars.

  • PDF

An Experimental Study of the Lap Splice Performance with Rib Effect (철근의 마디 형상에 따른 겹침이음 성능 실험)

  • Seo, Min-Choul;Hong, Geon-Ho;Choi, Oan-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.35-36
    • /
    • 2010
  • This research investigated the bond characteristic by lap splice experimental which has change relative area on rib variation of reinforcing bar. As a result has similar load-deflection curve with existing experiment, Maximum yield strength and displacement is increase.

  • PDF

Evaluation of Mechanical Properties of Barrier Ribs for Plasma Display Panel Using Nano Indenter Technology (나노 인덴터를 이용한 플라즈마 디스플레이 소자(PDP)내 격벽의 기계적 물성 평가)

  • Jung, Byung-Hae;Kim, Hyung-Sun
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • For the rib materials in PDP(plasma display panel), an effective method to improve the mechanical properties is to form a composite material by reinforcing a glass matrix with rigid fillers, such as alumina and titania powders. In this study, two types of ribs with different volume percent of fillers and with different glass matrix were tested for hardness, Young's modulus with the Berkovich indentation. As a result, cracks appeared around at the load of 1345 mN for the dense type of rib, while porous one endured until 2427 mN without any crack formation. Young's modulus and hardness decreased at the range: 90∼65 GPa, 9∼4 GPa, respectively as a function of indent load. Thus, a new method with nanoindenter represents a possible evaluation method for mechanical properties of barrier ribs.

Study on the Ultimate Strength of Gusset Plate-Circular Hollow Section(CHS) Joint Stiffened with Rib-plate by End Restraint (단부 구속을 받는 리브 보강 플레이트 원형강관 X형 접합부의 극한내력 도출에 관한 연구)

  • Kim, Woo-Bum;Park, Hyun-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.383-398
    • /
    • 2012
  • A finite element analysis study was performed to investigate the behavior and strength of a Plate-Circular Hollow Section joint stiffened with Rib-plate, Since The strength of plate-Circular Section joint is reduced by joint of stress and local plastic deformation which is caused by wall moment, rib plates are attached to the upper and lower Plate-Circular Hollow Section joint for redistribution of stress. The behaviors of joints stiffened with Rib-plate according to shape of rib and reinforcing method, etc are different from those of joints which is not stiffened. However, the criterion of hollow structural section was limited on some parts. Therefore, this study intends to investigate the behavior and structural capacity of Plate-Circular Hollow Section joints stiffened with Rib-plate and compare the Finite element analysis with the Design Equation. Finally, this study proposes the reasonable ultimate strength formula through the comparisons with other design guide.

Bond Stress-Strain Predict Model with Inner Cover Thickness of Steel Wire Used in Void Deck Plate (중공 데크플레이트에 사용된 철선의 내부피복두께에 따른 부착응력-변형률 예측모델)

  • Kim, Hee-Hyeon;Choi, Chang-Sik
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • In case of evaluating the bond stress of a void deck plate using a wire steel, there is no standard formula considering both the influence on the void and the type of the reinforcing bar. Therefore we proposed a model equation considered the bond characteristics of the void deck plate. A total of 46 specimens was carried out a direct pull-out test and the test variables were the presence of a void body, type of reinforcing bar, the inner cover thickness according to the location of reinforcing bars and bond region. As a result of the comparison between the steel bar and steel wire, the bond stress of the steel wire with the relative rib area of 0.071 is 4.5 ~ 28.58% lower than that of the steel bar with 0.092 and the bond stress reduction rate increases when the inner cover thickness is insufficient. In the case of the inner cover thickness of $1.7d_b$ and $2.7d_b$, the bond stress was reduced to 48.7 ~ 68.4%. In the inner cover thickness was $4.9d_b$ and $5.2d_b$, the bond stresses were equivalent to those of the solid specimens. It was confirmed that the average bond stress and strain were affected by the inner cover thickness. Therefore the predicted model for one module of the void deck plate is proposed and verified by considering the bond characteristics of the void deck plate.

Thermal and Mechanical Properties of EPDM and CR Compounds with Various Fillers and Its Contents for V-rib Belt (V-rib 벨트용 EPDM과 CR의 고온 내구성과 기계적 물성에 미치는 충전제의 영향)

  • Seo, Kwan-Ho;Hwang, Byung-Kook;Hong, Ki-Heon;Park, Hae-Youn;Jeon, Il-Ryeon
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.299-307
    • /
    • 2009
  • The effects of reinforcing materials on durability and mechanical properties of V-rib belt were investigated. Cotton fiber and ZnO were used as a filler for CR, and cotton and aramid fiber were used for EPDM rubber compounds. These materials were prepared as a specimen and V-rib belt for heat resistant and mechanical test. High contents of ZnO give improved wear resistance, and higher contents of cotton fiber showed higher durability in high rotation speed but lower wear resistance for CR rubber compounds. Using the aramid and cotton fiber together in EPDM rubber compounds, thermal and wear resistance were improved simultaneously. The material containing EPDM matrix showed better durability and wear resistance than those of containing CR matrix comparing in the same cotton fiber contents.

Composite Behavior of Perfobond Rib Shear Connector for Steel-concrete Decks (강-콘크리트 합성 바닥판용 전단연결재의 합성 거동 연구)

  • Kim, Hyeong-Yeol;Koo, Hyun-Bon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.91-97
    • /
    • 2006
  • This paper presents the results of push-out test conducted for the perfobond rib shear connectors welded onto steel-concrete composite deck. Push-out test specimen consists of profiled steel sheeting, perfobond rib, reinforcement, and concrete. To provide longitudinal shear resistance between the profiled sheeting and the concrete, perfobond rib with a number of holes was used. The parameters considered in the design of perfobond rib were the spacing and location of holes, and effect of reinforcing bars placed in the holes. To validate the effectiveness of the proposed system, twelve specimens were fabricated and tested. Although the scope of test was limited in nature, the results of test have shown that the perfobond ribs can be effectively used for shear connection in the steel-concrete composite decks.

Procuring the Fire Resistance Performance and Structure of Non-Refractory Coating CFT with Using the Corrugate-rib (Corrugate-rib를 활용한 무내화피복 CFT공법의 구조 및 내화성능 확보)

  • Lee, Dong-Oun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.747-754
    • /
    • 2017
  • The Concrete-Filled Tube (CFT) system was developed for its excellent structural performance, such as its good stiffness, stress and ductility, which is derived from the mechanical advantages of its composite structure. However, it is known that the flat type of reinforcing plates need stiffeners placed at a certain distance from each other to avoid buckling failure, which increases the cost accordingly. This paper investigates the contribution of the rib elements placed inside the steel tube for the purpose of increasing the bond strength between the steel and concrete and fire performance with no additional protection. The test results also demonstrate the effectiveness of the corrugated rib's shape against fire. The results of this study showed that the buckling prevention and fire resistance performance criteria were satisfied by the application of the inner surface attachment rib, due to the resulting increase in the strength of the CFT column. Therefore, it is considered that the CFT method using the corrugated rib structure reinforcement developed through this study satisfies the structural and fire resistance performance criteria without the need for a refractory coating. Future studies will be needed to make the process efficient and economical for factory production.

Experimental Study on Behaviour of Composite Beams with Ribbed Slabs and Unreinforced Web Openings (리브형 슬래브를 갖는 유공합성보의 거동에 관한 실험적 연구)

  • 김창호;박종원;김희구;이창섭;박준용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.989-994
    • /
    • 2000
  • Nine tests to failure are performed on full-scale eight composite beams with unreinforced web opening having ribbed slabs with formed deck which are perpendicular to the steel section and one steel beam. The effects of slab width, reinforcing of stud, moving of rib, moment-shear ratio are studied. At the low M/V ratio, Vierendeel action around the high moment end of the opening is occurred and the large deflection across the opening and transverse cracking are occurred with increasing of applied load. As the M/V ratio increases, the relative deflection across the opening decreases. And at failure, full tensile strain are occurred at bottom T section of steel beam, and concrete crushes at the High Moment End of the opening. With narrow slabs, diagonal tension failure at the high moment end of the opening is occurred. And with wide slabs, rib punch-through failure is occurred near the high moment end of the opening. The implications for design are discussed.

The Push-out Resistance Evaluation of Steel Pipe Cap with Perfobond Rib Shear Connector (퍼포본드로 보강된 강관말뚝머리의 압발저항성능 평가)

  • Koo, Hyun-Bon;Kim, Young-Ho;Kang, Jae-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.77-80
    • /
    • 2008
  • The conventional pile cap reinforcement systems regulated in the design specifications have some restrictions in design and construction such as disposition of reinforcing bars, insurance of anchoring length of reinforcements and requirement of shear key. This study suggests a new type of steel pipe pile cap system with perforated rib shear connector as an alternative to the conventional pile cap system for the improvement in structural performance and simplification of construction. And, experimental results of push-out are scribed for the evaluation of structural performance of the new pile cap system and it was compared to the structural behavior of conventional pile cap system.

  • PDF