• Title/Summary/Keyword: Reinforcing Effect

Search Result 901, Processing Time 0.026 seconds

Effect of Hyeongbangdojeok-san on Acute Cocaine-induced Behavioral Effect and Immediate Early Gene Expression in Rats. (형방도적산(荊防導赤散)이 급성코카인 투여로 인해 유도된 흰쥐의 행동량과 c-Fos 발현에 미치는 영향)

  • Seo, Ji-Yong;Choi, Ae-Ryun;Koo, Deok-Mo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.22 no.4
    • /
    • pp.65-76
    • /
    • 2010
  • 1. Objectives The present study was designed to investigate the effect of Soyangin Hyeongbangdojeok-san(HBDJS) on acute cocaine-induced behavior effect and gene expression in the rat brain. 2. Methods Experimental animals were composed of saline(SAL), cocaine(COC), HBDJS + COC, HBDJS + SAL group. Rats received HBDJS(100, 200 mg/kg, p.o.) 1 h prior to cocaine hydrochloride(20 mg/kg, i.p.) treatment respectively. After cocaine injection, locomotor activity and rearing were measured in a rectangular container equipped with a video camera above the center of the floor for 60 min. In addiction, c-Fos expression in the rat brain was detected using immunohistochemistry 2 h after cocaine injection. And the effect of HBDJS on acute cocaine-induced pERK, pElk, pCREB upstream of c-Fos expression was detected using western blotting and immunohistochemistry 15 min after cocaine challenge. 3. Results The present results show that HBDJS at dose of 200 mg/kg attenuated cocaine-induced both locomotor activity and rearing. Also HBDJS at dose of 200 mg/kg significantly decreased c-Fos expression in the rat brain(nucleus accumebns and striatum). However HBDJS at dose of 200 mg/kg have no effect on cocaine-induced pERK, pCREB, pElK-1 expression. HBDJS is c-Fos expression through ERK-independent pathway. 4. Conclusions. These results suggest that HBDJS may be effective in suppressing the reinforcing effects of cocaine.

Mediating Effect of Rumination on the Relationship between Savoring Beliefs and Positive Emotion (향유신념과 긍정정서의 관계에 미치는 반추의 매개효과)

  • Ju, Haewon;Hong, Ji-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.435-444
    • /
    • 2021
  • The purpose of this study is to suggest enhancing positive emotions by examining the relationship between savoring belief, rumination, and positive emotion for university and graduate students. For this purpose, a questionnaire measuring savoring beliefs, ruminations, and positive emotion was conducted for 235 university and graduate students in Seoul. As a result of the Structural modeling analysis, students' savoring beliefs had a positive effect on positive emotion and negative effect on rumination, and rumination had a negative effect on positive emotion. Rumination showed a partial mediating effect on the relationship between savoring beliefs and positive emotion. The results of this study provide important meaning that the savoring beliefs is a process of exploring the positive emotion because it does not deal with the mechanism of reinforcing positive emotions in detail. That is, it is meaningful in that it confirms the effect of an effective savoring strategy to increase the positive emotion and at the same time reveals the mechanism. Rather than simply focusing on the savoring beliefs, it can be expected that positive emotion will be improved by intervening with rumination.

Effects of Coptis japonica on Morphine-Induced Conditioned Place Preference in Mice

  • Lee, Seok-Yong;Song, Dong-Keun;Jang, Choon-Gon
    • Archives of Pharmacal Research
    • /
    • v.26 no.7
    • /
    • pp.540-544
    • /
    • 2003
  • Morphine, an analgesic with significant abuse potential, is considered addictive because of drug craving and psychological dependence. It is reported that repeated treatment of morphine can produce conditioned place preference (CPP) showing a reinforcing effect in mice. CPP is a useful method for the screening of morphine-induced psychological dependence. In the present study, we investigated the effect of the methanolic extract of Coptis japonica (MCJ) on morphine-induced CPP in mice. Furthermore, we examined c-fos expression in the parietal cortex, piriform cortex, striatum, nucleus accumbens, and hippocampus of the morphine-induced CPP mouse brain. Treatment of MCJ 100 mg/kg inhibited morphine-induced CPP. Expression of c-fos was increased in the cortex, striatum, nucleus accumbens, and hippocampus of the morphine-induced CPP mouse brain. These increases of expression were inhibited by treatment with MCJ 100 mg/kg, compared to the morphine control group. Taken together, these results suggest that MCJ inhibits morphine-induced CPP through the regulation of c-fos expression in the mouse brain.

Characteristics of Transitional Period of Korean Family and Family Policy (한국 가족의 전환기적 특성과 가족정책)

  • Lee, Seung-Mie;Song, Hye-Rim;Lee, Wan-Jung;Sung, Miai;Chin, Mee-Jung;Lee, Hyun-Ah
    • Journal of Families and Better Life
    • /
    • v.30 no.6
    • /
    • pp.183-199
    • /
    • 2012
  • Since the Framework Act on Healthy Families came into effect in 2005, family policy has become a primary field of social policy, and 'family' has emerged as an important keyword for solving Korean society's various phenomena and problems. In order to seek practical plans for reforming social policy through family policy, this thesis has analyzed the transitional characteristics of Korean families in relation to where Korean families currently stand and the situation they are facing. This thesis has also reviewed the content of family policy in the master plan of healthy families, the starting point of the actual family policy, and other related policies. It also has analyzed the key content of child care support policy. From these various analyses and discussions, this thesis has emphasized "family care" as the keyword of family policy, family effect analysis as the means of reinforcing family perspective, and family integrity for policy effectiveness.

Static strength of collar-plate reinforced tubular T-joints under axial loading

  • Shao, Yong-Bo
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.323-342
    • /
    • 2016
  • To study the effect of collar-plate reinforcement on the static strength of tubular T-joints under axial loading, fundamental research work is carried out from both experimental test and finite element (FE) simulation. Through experimental tests on 7 collar-plate reinforced and 7 corresponding un-reinforced tubular T-joints under axial loading, the reinforcing efficiency is investigated. Thereafter, the static strengths of the above 14 models are analyzed by using FE method, and it is found that the numerical results agree reasonably well with the experimental data to prove the accuracy of the presented FE model. Additionally, a parametric study is conducted to analyze the effect of some geometrical parameters, i.e., the brace-to-chord diameter ratio ${\beta}$, the chord diameter-to-chord wall thickness ratio $2{\gamma}$, collar-plate thickness to chord wall thickness ratio ${\tau}_c$, and collar-plate length to brace diameter ratio $l_c/d_1$, on the static strength of a tubular T-joint. The parametric study shows that the static strength can be greatly improved by increasing the collar-plate thickness to chord wall thickness ratio ${\tau}_c$ and the collar-plate length to brace diameter ratio $l_c/d_1$. Based on the numerical results, parametric equations are obtained from curving fitting technique to estimate the static strength of a tubular T-joint with collar-plate reinforcement under axial loading, and the accuracy of these equations is also evaluated from error analysis.

Influence of External Reinforcement on Strain Characteristics of Critical Current in BSCCO Superconducting Tapes

  • Shin, Hyung-Seop;Kazumune Katagiri
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.15-19
    • /
    • 2003
  • For the purpose of standardization of the critical current measurement, it is meaningful to describe how $I_{c}$ will behave as the stress/strain level changes. In this study, strain dependencies of the critical current $I_{c}$ in Ag-alloy sheathed multifilamentary Bi(2212) and Bi(2223) superconducting tapes were evaluated at 77K, 0T. The external reinforcement was accomplished by soldering AgMgNi alloy tapes onto single or both sides of the sample. With the external reinforcement to the Bi(2212) tape, the strength of the tapes increased but the critical current at the strain free state, $I_{c0}$ decreased in some cases. The strain for onset of the $I_{c}$ degradation, $\varepsilon$$_{\irr}$, increased with an increase of the reinforcing volume and then saturated to a certain value. The effect of external reinforcement on the degradation of $I_{c}$ due to the bending strain in the Bi(2223) tape was also examined. Contrary to the expectation, it showed a significant $I_{c}$ degradation even at a small strain of 0.4 %. The observations of damage morphologies gave a good explanation to the $I_{c}$ behavior.c/ behavior.r.

Measurement and Analysis of Structural Grounding Effect of Concrete Pole (콘크리트 전주 구조체의 접지효과 측정 및 분식)

  • Choi, Jong-Kee;Kim, Dong-Myoung;Lee, Hyung-Soo;Shim, Keun-Bo;Kim, Kyung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.36-40
    • /
    • 2009
  • Concrete poles(CP) are popular supports for distribution lines. Various types of grounding electrode, such as copper-clad rods, have been used to maintain CP's ground resistance under the required value. The buried part of CP can also have structural grounding effect because of its iron reinforcing rods inside CPs. In this paper, we measured the total ground current injected into CP ground while measuring the ground current splitting to the metal electrode as well as the total injecting current. By this, it was able to measure the ground current splitting to CP structure. Based on the measured results, interrelationship between ground resistance of metal electrodes and current split factor to CP structure was analyzed.

Mechanical Properties of the Ground Improved by High Pressure Jet-Grouting and Analysis of Deformation of Propped Retaining Walls (고압분사주입공법으로 보강된 개량체의 특성 및 흙막이벽의 변형해석)

  • 심태섭;주승완
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.98-105
    • /
    • 2000
  • Recently, the construction method of high pressure jet-grouting is in wide-use, for the purpose of structure foundation ground, reinforcing of ground behind propped retaining walls and cut-off in order to perform safe construction of underground excavation work. This study was performed a serious of tests of field permeability and unconfined compressive strength upon ground improved established on the ground behind propped retaining walls and examined proper jet mechanism by changing the construction parameter value of high pressure jet-grouting. In addition, we got the conclusion like the followings as a result of inspecting the condition of earth pressure distribution and deformation, using elasto-plastic method and FEM. 1. In that characteristics of strength of ground improved, with the same condition of construction parameter, unconfined compressive strength of sand gravel is shown bigger than that of silty sand by about 1.6 times and cut-off effect is shown to have effect of reducing the permeability of original ground by about 10$^{-2}$ ~10$^{-3}$ cm/s. 2. As a result of analysis of figures of horizontal displacing quantity of propped retaining walls materials regarding before and after High pressure jet- grouting through FEM, the reducing quantity of 0.1~0.3mm in maximum horizontal displacement is shown.

  • PDF

Effect of reinforcement strength on seismic behavior of concrete moment frames

  • Fu, Jianping;Wu, Yuntian;Yang, Yeong-bin
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.699-718
    • /
    • 2015
  • The effect of reinforcing concrete members with high strength steel bars with yield strength up to 600 MPa on the overall seismic behavior of concrete moment frames was studied experimentally and numerically. Three geometrically identical plane frame models with two bays and two stories, where one frame model was reinforced with hot rolled bars (HRB) with a nominal yield strength of 335 MPa and the other two by high strength steel bars with a nominal yield strength of 600 MPa, were tested under simulated earthquake action considering different axial load ratios to investigate the hysteretic behavior, ductility, strength and stiffness degradation, energy dissipation and plastic deformation characteristics. Test results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frame models reinforced with normal and high strength steel bars have comparable overall deformation capacity. Compared with the frame model subjected to a low axial load ratio, the ones under a higher axial load ratio exhibit more plump hysteretic loops. The proved reliable finite element analysis software DIANA was used for the numerical simulation of the tests. The analytical results agree well with the experimental results.

Evaluate the effect of steel, polypropylene and recycled plastic fibers on concrete properties

  • Fayed, Sabry;Mansour, Walid
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.319-332
    • /
    • 2020
  • The impacts of reinforcing concrete matrix with steel fibers, polypropylene fibers and recycled plastic fibers using different volume fractions of 0.15%, 0.5%, 1.5% and 2.5% on the compressive and tensile characteristics are experimentally investigated in the current research. Also, flexural behavior of plain concrete (PC) beams, shear performance of reinforced concrete (RC) beams and compressive characteristics of both PC and RC columns reinforced with recycled plastic fibers were studied. The experimental results showed that the steel fibers improved the splitting tensile strength of concrete higher than both the polypropylene fibers and recycled plastic fibers. The end-hooked steel fibers had a positive effect on the compressive strength of concrete while, the polypropylene fibers, the recycled plastic fibers and the rounded steel fibers had a negative impact. Compressive strength of end-hooked steel fiber specimen with volume fraction of 2.5% exhibited the highest value among all tested samples of 32.48 MPa, 21.83% higher than the control specimen. The ultimate load, stiffness, ductility and failure patterns of PC and RC beams in addition to PC and RC columns strengthened with recycled plastic fibers enhanced remarkably compared to non-strengthened elements. The maximum ultimate load and stiffness of RC column reinforced with recycled plastic fibers with 1.5% volume fraction improved by 21 and 15%, respectively compared to non-reinforced RC column.