• Title/Summary/Keyword: Reinforcement performance

Search Result 1,745, Processing Time 0.022 seconds

A Study on the Flexural Performance of Steel Fiber-Reinforced Beams lightly Reinforced Below the Minimum Steel Reinforcement (최소철근량 이하로 보강된 강섬유보강 보의 휨성능 고찰)

  • Kang, Duk-Man;Park, Yong-Gul;Moon, Do-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.35-44
    • /
    • 2017
  • In this study, steel fiber-reinforced concrete beams with ordinary steel reinforcements, that are below minimum steel reinforcement amount specified in domestic concrete structure design code, were tested in flexure until failure. Steel reinforcement ratio considered were 44%, 66%, 78% and 100% of the minimum steel reinforcement. Considered steel fiber volume fractions were 0.25%, 0.50%, 0.75% and 1.00%. In results, it is confirmed that steel fibers greatly improve crack performance. Also, the steel fibers contributed to increment in yield load not in ultimate load. But the increment was not greater than the reduction by steel reinforcement reduction. The use of steel fibers in RC beams lightly reinforced below the minimum reinforcement ratio specified design code reduced ductility greatly. Consequently, steel reinforcement ratio in steel fiber-reinforced beams lightly reinforced below the minimum steel reinforcement should be increased in order to enhance proper ductility.

Performance Improvement of Evolution Strategies using Reinforcement Learning

  • Sim, Kwee-Bo;Chun, Ho-Byung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.125-130
    • /
    • 2001
  • In this paper, we propose a new type of evolution strategies combined with reinforcement learning. We use the variances of fitness occurred by mutation to make the reinforcement signals which estimate and control the step length of mutation. With this proposed method, the convergence rate is improved. Also, we use cauchy distributed mutation to increase global convergence faculty. Cauchy distributed mutation is more likely to escape from a local minimum or move away from a plateau. After an outline of the history of evolution strategies, it is explained how evolution strategies can be combined with the reinforcement learning, named reinforcement evolution strategies. The performance of proposed method will be estimated by comparison with conventional evolution strategies on several test problems.

  • PDF

Load Transfer Test of Spirally Reinforced Anchorage Zone for Banded Tendon Group (나선형 원형철근으로 보강된 집중배치 텐던 정착구역에 대한 하중전달시험)

  • Cho, Ah Sir;Kang, Thomas H.K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.59-67
    • /
    • 2017
  • In this study, load transfer tests based on KCI-PS101 were conducted to verify the performance of spiral anchorage zone reinforcement for banded post-tensioning (PT) monostrands. With results, the compressive strength of spiral reinforcement was increased by about 20% than that of specimens with two horizontal steel bars and 8% than that of U-shaped bars. Advanced spiral reinforcement for corner increases compressive strength and can resist the spalling forces or fall-out effect at the corner by shear. The ratio of maximum load to amount of steel of the spiral reinforcement is about twice than that of U-shaped reinforcement. With increase of compressive strength capacity and improvement of constructability, the spiral reinforcement is considered to have advantages of promoting the performance of PT anchorage zone compared to conventional methods.

Parametric Study for Structural Reinforcement Methods of Disposal Container for NPP Decommissioning Radioactive Waste

  • Hyungoo Kang;Hoseog Dho;Jongmin Lim;Yeseul Cho;Chunhyung Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.329-345
    • /
    • 2023
  • This paper described a method for analyzing the structural performance of a metal container used for disposing radioactive waste generated during the decommissioning of a nuclear power plant, and numerical analysis results of a method for reinforcing the container. The containers to be analyzed were those that can be used in near-surface and landfill disposal facilities scheduled to be operated at the Gyeongju radioactive waste disposal facility. Structural reinforcement of the container was performed by lattice reinforcement, column reinforcement, and bottom plate reinforcement. Accordingly, a total of 14 reinforcement cases were modeled. The external force causing damage to the container was set equivalent to the impact of a 9-m fall, accounting for the height of the vault at the near-surface disposal facility. The reinforcement methods with a high contribution to the structural performance of the container were concluded to be lattice and column reinforcements.

Experimental investigation of creep and shrinkage of reinforced concrete with influence of reinforcement ratio

  • Sun, Guojun;Xue, Suduo;Qu, Xiushu;Zhao, Yifeng
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.211-218
    • /
    • 2019
  • Predictions about shrinkage and creep of concrete are very important for evaluating time-dependent effects on structural performance. Some prediction models and formulas of concrete shrinkage and creep have been proposed with diversity. However, the influence of reinforcement ratio on shrinkage and creep of concrete has been ignored in most prediction models and formulas. In this paper, the concrete shrinkage and creep with different ratios of reinforcement were studied. Firstly, the shrinkage performance was tested by the 10 reinforced concrete beams specimens with different reinforcement ratios for 200 days. Meanwhile, the creep performance was tested by the 5 reinforced concrete beams specimens with different ratios of reinforcement under sustained load for 200 days. Then, the test results were compared with the prediction models and formulas of CEB-FIP 90, ACI 209, GL 2000 and JTG D 62-2004. At last, based on ACI 209, an improved prediction models and formulas of concrete shrinkage and creep considering reinforcement ratio was derived. The results from improved prediction models and formulas of concrete shrinkage and creep are in good agreement with the experimental results.

Cyclic Behavior of Reinforced Concrete Coupling Beams with Bundled Diagonal Reinforcement (묶음 대각철근을 적용한 철근콘크리트 연결보의 이력거동 평가)

  • Han, Sang Whan;Kwon, Hyun Wook;Shin, Myung Su;Lee, Ki Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2014
  • Diagonal reinforced coupling beam of coupled shear walls can provide sufficient strength and stiffness to resist lateral force. However, the reinforcement details for coupling beams required by ACI 318 (2011) are difficult to construct because of the reinforcement congestion and confined interior area. This study presents experimental results about the seismic performance of coupling beams having bundled diagonal reinforcement to improve the workability. Experiments were conducted using half scaled precast coupling beams having an aspect ratio of 2.0. It was observed that the bundled diagonal reinforced coupling beams can develop seismic performance similar to the coupling beams with requirement details specified in ACI 318 (2011).

Load bearing capacity reduction of concrete structures due to reinforcement corrosion

  • Chen, Hua-Peng;Nepal, Jaya
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.455-464
    • /
    • 2020
  • Reinforcement corrosion is one of the major problems in the durability of reinforced concrete structures exposed to aggressive environments. Deterioration caused by reinforcement corrosion reduces the durability and the safety margin of concrete structures, causing excessive costs in managing these structures safely. This paper aims to investigate the effects of reinforcement corrosion on the load bearing capacity deterioration of the corroded reinforced concrete structures. A new analytical method is proposed to predict the crack growth of cover concrete and evaluate the residual strength of concrete structures with corroded reinforcement failing in bond. The structural performance indicators, such as concrete crack growth and flexural strength deterioration rate, are assumed to be a stochastic process for lifetime distribution modelling of structural performance deterioration over time during the life cycle. The Weibull life evolution model is employed for analysing lifetime reliability and estimating remaining useful life of the corroded concrete structures. The results for the worked example show that the proposed approach can provide a reliable method for lifetime performance assessment of the corroded reinforced concrete structures.

Comparison of Reinforcement Learning Activation Functions to Improve the Performance of the Racing Game Learning Agent

  • Lee, Dongcheul
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1074-1082
    • /
    • 2020
  • Recently, research has been actively conducted to create artificial intelligence agents that learn games through reinforcement learning. There are several factors that determine performance when the agent learns a game, but using any of the activation functions is also an important factor. This paper compares and evaluates which activation function gets the best results if the agent learns the game through reinforcement learning in the 2D racing game environment. We built the agent using a reinforcement learning algorithm and a neural network. We evaluated the activation functions in the network by switching them together. We measured the reward, the output of the advantage function, and the output of the loss function while training and testing. As a result of performance evaluation, we found out the best activation function for the agent to learn the game. The difference between the best and the worst was 35.4%.

Sheet Jointing Method of the Roof Exposed Hybrid Waterproofing Using the Bump-type Joint Reinforcement (돌기형 접합 보강재를 이용한 옥상 노출 복합방수의 조인트 시공방법에 관한 연구)

  • Kim, Meong-Ji;An, Ki-Won;Kim, Dong-Chun;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.147-148
    • /
    • 2018
  • Seat waterproofing materials applied to the roof of a building concrete structure inevitably produce joints and are applied with opposite dam joints or overlapping joints depending on the waterproof material applied to the top of the sheet. In this case, the joint performance is determined by the material at the top, rather than by the superimposed joint. In order to solve this problem, various reinforcements have been used to apply to the connecting parts of the opposite dam, but the problem of attachment between different materials or the lack of reinforcement of the joint tape has not been solved. Therefore, for the purpose of securing tensile performance to the joints, this study is used as a reinforcement for the joints of PP materials with high tensile performance and as a reinforcement for nylon materials.

  • PDF

Organic fiber reinforcement for Performance improvement of Blast resistance and Flexural Performance Evaluation of Fiber reinforced concrete using organic fiber reinforcement (방폭 성능 강화용 유기계 섬유보강재 제조 및 이를 혼입한 섬유보강 콘크리트의 휨성능 평가)

  • Jeon, Chanki;Jeon, Joongkyu;Kim, Sungil;Kim, Kihyung
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.211-218
    • /
    • 2015
  • This study propose the organic fiber reinforcement for performance improvement of blast resistance. Proposed fibers are polyamide fiber, PET fiber and aramid fiber and fiber reinforcements were produced by ATY method. To evaluate strain energy absorption capacity of organic fiber reinforced concrete using organic fiber reinforcement, 4-point bending test and 3-point bending tests on notched beam were performed. Test results show that PET fiber reinforced concrete has outstanding performance. It is thought that the PET fiber is effective for the performance improvement of blast resistance.