• Title/Summary/Keyword: Reinforcement Performance

Search Result 1,746, Processing Time 0.026 seconds

A Comparative Study on the Impermeability-reinforcement Performance of Old Reservoir from Injection and Deep Mixing Method through Laboratory Model Test (실내모형시험을 통한 지반혼합 및 주입공법의 노후저수지 차수 보강성능 비교 연구)

  • Song, Sang-Huwon
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.2
    • /
    • pp.45-52
    • /
    • 2022
  • Of the 17,106 domestic reservoirs(as of December 2020), 14,611 are older than 50 years, and these old reservoirs will gradually increase over time. The injection grouting method is most applied to the reinforcement method of the aging reservoir. However, the injection grouting method is not accurate in uniformity and reinforced area. An laboratory model test was conducted to evaluate the applicability of the deep mixing method, which compensated for these shortcomings, as a reservoir reinforcement method. As a result of calculating the hydraulic conductiveity for each method through the model test results, the injection grouting method was calculated as a hydraulic conductiveity value that was about 7.5 times larger than that of the deep mixing method. As a result of measuring the water level change in the laboratory model test, it was found that the water level change decreased in the injection method and deep mixing method compared to the non-reinforcement method. In addition, deep mixing method showed a water level change of about 15% based on 40 hours compared to the injection method, indicating that the water-reducing effect was superior to that of the injection method.

Seismic Performance of Gravity-Load Designed Post-Tensioned Flat Plate Frames (중력하중으로 설계된 포스트텐션 플랫플레이트 골조의 내진성능)

  • Han, Sang-Whan;Park, Young-Mi;Rew, Youn-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.31-38
    • /
    • 2010
  • The purpose of this study is to evaluate the seismic performance of gravity-designed post tensioned (PT) flat plate frames with and without slab bottom reinforcement passing through the column. In low and moderate seismic regions, buildings are often designed considering only gravity loads. This study focuses on the seismic performance of gravity load designed PT flat plate frames. For this purpose, 3-, 6- and 9-story PT flat plate frames are designed considering only gravity loads. For reinforced concrete flat plate frames, continuous slab bottom reinforcement (integrity reinforcement) passing through the column should be placed to prevent progressive collapse; however, for the PT flat plate frames, the slab bottom reinforcement is often omitted since the requirement for the slab bottom reinforcement for PT flat plates is not clearly specified in ACI 318-08. This study evaluates the seismic performance of the model frames, which was evaluated by conducting nonlinear time history analyses. For conducting nonlinear time history analyses, six sets of ground motions are used as input ground motions, which represent two different hazard levels (return periods of 475 and 2475 years) and three different locations (Boston, Seattle, and L.A.). This study shows that gravity designed PT flat plate frames have some seismic resistance. In addition, the seismic performance of PT flat plate frames is significantly improved by the placement of slab bottom reinforcement passing through the column.

Effect of Glass Fiber-Reinforced Connection on the Horizontal Shear Strength of CLT Walls

  • JUNG, Hongju;SONG, Yojin;HONG, Soonil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.685-695
    • /
    • 2020
  • The connection performance between cross-laminated timber (CLT) walls and support has the greatest effect on the horizontal shear strength. In this study, the horizontal shear performance of CLT walls with reinforced connection systems was evaluated. The reinforcements of metal bracket connections in the CLT connection system was made by attaching glass fiber-based reinforcement to the connection zone of a CLT core lamina. Three types of glass fiber-based reinforcement were used: glass fiber sheet (GS), glass fiber cloth (GT) and fiber cloth plastic (GTS). The horizontal shear strength of the fabricated wall specimens was compared and evaluated through monotonic and cyclic tests. The test results showed that the resistance performance of the reinforced CLT walls to a horizontal load based on a monotonic test did not improve significantly. The residual and yield strengths under the cyclic loading test were 38 and 18% higher, respectively, while the ductility ratio was 38% higher than that of the unreinforced CLT wall. The glass fiber-based reinforcement of the CLT connection showed the possibility of improving the horizontal shear strength performance under a cyclic load, and presented the research direction for the application of real-scale CLT walls.

Experimental and numerical studies on seismic performance of hollow RC bridge columns

  • Han, Qiang;Zhou, Yulong;Du, Xiuli;Huang, Chao;Lee, George C.
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.251-269
    • /
    • 2014
  • To investigate the seismic performance and to obtain quantitative parameters for the requirement of performance-based bridge seismic design approach, 12 reinforced concrete (RC) hollow rectangular bridge column specimens were tested under constant axial load and cyclic bending. Parametric study is carried out on axial load ratio, aspect ratio, longitudinal reinforcement ratio and transverse reinforcement ratio. The damage states of these column specimens were related to engineering limit states to determine the quantitative criteria of performance-based bridge seismic design. The hysteretic behavior of bridge column specimens was simulated based on the fiber model in OpenSees program and the results of the force-displacement hysteretic curves were well agreed with the experimental results. The damage states of residual cracking, cover spalling, and core crushing could be well related to engineering limit states, such as longitudinal tensile strains of reinforcement or compressive strains of concrete, etc. using cumulative probability curves. The ductility coefficient varying from 3.71 to 8.29, and the equivalent viscous damping ratio varying from 0.19 to 0.31 could meet the requirements of seismic design.

The Relative Effects of the Feedback Delivery Method(Face-to-Face vs. e-mail) and Reinforcement History on Quality Control Work Performance (피드백 제공방식과 강화 경험이 품질관리 수행에 미치는 효과)

  • Chae, Song-Hwa;Oah, She-Zeen
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.9
    • /
    • pp.117-126
    • /
    • 2016
  • This study examined the relative effects of different feedback delivery method (face-to-face vs. e-mail) and reinforcement history on work performance. Participants were asked to work on a simulated mobile phone assembly task. They performed for 30 minutes per session and attended 4 sessions. The dependents variable was the percentage of correctly completed work tasks. Of 100 participants recruited, 50 had a reinforcement history and another 50 had no reinforcement history with the feedback provider in this study. The participants in each group were randomly assigned into two experimental conditions: face-to-face feedback and e-mail feedback. The results showed that for the participants who had reinforcement history, the two feedback delivery methods did not produce a significant difference in the percentage of correctly completed work tasks. However, for those who had no reinforcement history, the two feedback methods did produce a significant difference.

A Study on Cooperative Traffic Signal Control at multi-intersection (다중 교차로에서 협력적 교통신호제어에 대한 연구)

  • Kim, Dae Ho;Jeong, Ok Ran
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1381-1386
    • /
    • 2019
  • As traffic congestion in cities becomes more serious, intelligent traffic control is actively being researched. Reinforcement learning is the most actively used algorithm for traffic signal control, and recently Deep reinforcement learning has attracted attention of researchers. Extended versions of deep reinforcement learning have been emerged as deep reinforcement learning algorithm showed high performance in various fields. However, most of the existing traffic signal control were studied in a single intersection environment, and there is a limitation that the method at a single intersection does not consider the traffic conditions of the entire city. In this paper, we propose a cooperative traffic control at multi-intersection environment. The traffic signal control algorithm is based on a combination of extended versions of deep reinforcement learning and we considers traffic conditions of adjacent intersections. In the experiment, we compare the proposed algorithm with the existing deep reinforcement learning algorithm, and further demonstrate the high performance of our model with and without cooperative method.

Seismic Performance of Special Shear Wall Structural System with Effectively Reduced Reinforcement Detail (완화된 단부 배근상세를 갖는 특수전단벽 구조시스템의 내진성능평가)

  • Chun, Young-Soo;Lee, Ki-Hak;Lee, Hyo-Won;Park, Young-Eun;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.271-281
    • /
    • 2013
  • The current seismic design code prescribes that a structural wall should be designed as a special shear wall when the building height is more than 60 m and its seismic design category is classified as D. However, the use of a special shear wall has a negative effect on constructability and economic efficiency. In the present study, the seismic performance of a special shear wall and a special shear wall with relaxed reinforcement detail was evaluated through a cyclic reversal loading test. The specimens were constructed to measure the results of the experimental variable regarding the reinforcement details of the special boundary element. Next, the seismic performances of a special shear wall structural system and that of a special shear wall structural system with relaxed reinforcement detail was evaluated by methods proposed in the FEMA P695. The cyclic reversal loading test results of this study showed that the performance of the shear wall with relaxed reinforcement detail was almost similar to the performance of a special shear wall and has the performance which requested from standard. The results of the seismic evaluation showed that all special shear walls with relaxed reinforcement detail are satisfied with the design code and seismic performance.

Effect of geometrical configuration on seismic behavior of GFRP-RC beam-column joints

  • Ghomia, Shervin K.;El-Salakawy, Ehab
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.313-326
    • /
    • 2020
  • Glass fiber-reinforced polymer (GFRP) bars have been introduced as an effective alternative for the conventional steel reinforcement in concrete structures to mitigate the costly consequences of steel corrosion. However, despite the superior performance of these composite materials in terms of corrosion, the effect of replacing steel reinforcement with GFRP on the seismic performance of concrete structures is not fully covered yet. To address some of the key parameters in the seismic behavior of GFRP-reinforced concrete (RC) structures, two full-scale beam-column joints reinforced with GFRP bars and stirrups were constructed and tested under two phases of loading, each simulating a severe ground motion. The objective was to investigate the effect of damage due to earthquakes on the service and ultimate behavior of GFRP-RC moment-resisting frames. The main parameters under investigation were geometrical configuration (interior or exterior beam-column joint) and joint shear stress. The performance of the specimens was measured in terms of lateral load-drift response, energy dissipation, mode of failure and stress distribution. Moreover, the effect of concrete damage due to earthquake loading on the performance of beam-column joints under service loading was investigated and a modified damage index was proposed to quantify the magnitude of damage in GFRP-RC beam-column joints under dynamic loading. Test results indicated that the geometrical configuration significantly affects the level of concrete damage and energy dissipation. Moreover, the level of residual damage in GFRP-RC beam-column joints after undergoing lateral displacements was related to reinforcement ratio of the main beams.

Seismic Performance of Coupled Shear Wall Structural System with Relaxed Reinforcement Details (완화된 배근 상세를 갖는 병렬전단벽 구조시스템의 내진성능평가)

  • Song, Jeong-Weon;Chun, Young-Soo;Song, Jin-Kyu;Seo, Soo-Yeon;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.187-196
    • /
    • 2016
  • The current seismic design code prescribes that coupling beam should be reinforced using diagonally bundled bars. However, the use of a diagonally bundled bars has a negative effect on constructability and economic efficiency. In the present study, the seismic performance of 4 coupling beams with the different details of reinforcement was evaluated through a cyclic reversal loading test. The specimens were constructed to measure the results of the experimental variable regarding the details of shear reinforcement. Next, the seismic performance of the coupled shear wall system evaluated by methods proposed in the FEMA P695. The cyclic reversal loading test results of this study showed that the performance of coupling beams with relaxed reinforcement detail was almost similar to that of a coupling beam with the ACI detail and meet the level which requested from standard. The result of the seismic evaluation showed that all coupling beams are satisfied with the design code and seismic performance.

Improvement of Structure for Single-piece Side-otr reinforcement applied Hot-stamping (일체형 핫스템핑 사이드 아우터 레인프 개선 구조 연구)

  • Lee, Hae Hoon;Wee, Sung Gae;Kim, Won Gun;Park, Dae Myoung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.3
    • /
    • pp.13-19
    • /
    • 2018
  • This research is to optimize Single-Piece Side otr reinforcement using Hot-stamping and to strengthen weak regions on Single-Piece Side otr reinforcement. As a consequence, the weight and the number of parts were reduced and resulting in improvement of impact and stiffness performance when compared to multi-piece construction.