• 제목/요약/키워드: Reinforced wall

검색결과 1,068건 처리시간 0.02초

쏘일시멘트 보강토옹벽 사례 연구 (A Case study on reinforced retaining wall backfilled by soil cement)

  • 이명재;장기수;이진환;백민철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.985-994
    • /
    • 2004
  • The application of the reinforced retaining wall has increased in the last 10 years in Korea. The height of reinforced wall is generally limited to less than 15m. It has been reported that the reinforced wall higher than 10m should have higher strength reinforcement or should reduce the lateral earth pressure of the reinforced wall to secure the stability of the wall. In this study, the reinforced retaining wall was constructed 14m high, backfilled by a mixture of soil and cement and instrumented on the reinforcement elements. The instrumented reinforced wall was monitored during and after construction. Field monitoring result shows that a backfill by a mixture of soil and cement reduced the tensile stress developed on the reinforcing elements and the reinforced wall backfilled by a mixture of soil and cement performed successful.

  • PDF

국내 보강토옹벽 신기술 조사 연구 (Investigation on Recently Developed Reinforced Soil Wall System)

  • 이광우;조삼덕
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.158-167
    • /
    • 2008
  • Reinforced earth wall system has been popularized since its introduction to Korean civil engineering society in early 1980's. Nowadays, the increased use of reinforced earth wall for the purpose of obtaining more land brings several additional demands such as environmental-friendly, better stable and constructible, and economical system. This paper introduces some recently developed reinforced earth wall systems with consideration of the current demands.

  • PDF

보강재 침하를 허용하는 연결시스템을 적용한 보강토옹벽의 거동 (Behavior of Reinforced Earth Retaining Wall for Connector System Driving the Settlement of Reinforcement)

  • 오종근;정종기;이송
    • 기술발표회
    • /
    • 통권2006호
    • /
    • pp.156-161
    • /
    • 2006
  • Recently, construction of soil-reinforced segmental retaining walls which used geosynthetics are being increased day by day due to its construction efficiency, economic efficiency, and its aesthetic view. The conventional reinforced earth retaining wall has the connector system to fix the reinforcement and block However, this system may cause the crack of block and the rupture of reinforcement due to the stress concentration near the face of reinforced earth retaining wall In this study, the new connector system, which is able to allow the settlement of reinforcement, was applied to analyze the effect of connector system of reinforced earth retaining wall The connection strength tests and centrifugal tests for both the conventional reinforced earth retaining wall and the settlement reinforced earth retaining wall were performed to compare the results

  • PDF

Stress evaluation method of reinforced wall-thinned Class 2/3 nuclear pipes for structural integrity assessment

  • Jae-Yoon Kim;Je-Hoon Jang;Jin-Ha Hwang;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1320-1329
    • /
    • 2024
  • When wall-thinning occurs in nuclear Class 2 and 3 pipes, reinforcement is typically applied rather than replacement. To analyze the structural integrity of reinforced wall-thinned pipe, stress analysis results using full 3-D FE analysis are not compatible to the design code equation, ASME BPVC Sec. III NC/ND-3650. Therefore, the efficient stress evaluation method for the reinforced wall-thinned pipe, compatible to the design code equation, needs to be developed. In this paper, stress evaluation methods for the reinforced wall-thinned pipe are proposed using the equivalent straight pipe concept. Furthermore, for fatigue analysis of the reinforced wall-thinned pipe, the stress intensification factor of reinforced wall-thinned pipe is presented using the structural stress method given in ASME BPVC Sec. VIII Div.2.

차량충돌에 대한 보강토 옹벽 안전성 확보를 위한 가드레일 설치거리 (Establishment of Guardrail Distance for Safety of Reinforced Earth Retaining Wall by Vehide Collision)

  • 박권;홍기남;안광국
    • 한국안전학회지
    • /
    • 제24권5호
    • /
    • pp.57-62
    • /
    • 2009
  • In this study, the numerical analyses regarding the distance between the guardrail and the reinforced earth wall as parameter were performed to determine the safe distance of guardrail installed on reinforced earth wall from the reinforced earth wall. The analyses were fulfilled by increasing the distance between the guardrail and reinforced earth wall from 150mm to 750mm. The computer program used in this research is LS-DYNA, which is very' popular in analysis of vehicle collision. Ford single unit truck in NCAC was employed as the model of vehicle and the velocity of vehicle collision was 80km/hr. As a results of analyses, the safety of guardrail was secured regardless of the distance between the guardrail and block of reinforced earth wall. However, to secure the safety of block of reinforced earth wall the distance between the guardrail and block of reinforced earth wall should be over 600mm.

원심모형실험에 의한 침하자유형 보강토 옹벽의 안정성 평가 (Evaluation of Stability for Settlement Free Reinforced Earth Retaining Wall by Centrifuge Model Tests)

  • 안광국;배우석
    • 한국지반환경공학회 논문집
    • /
    • 제7권6호
    • /
    • pp.23-34
    • /
    • 2006
  • 본 연구에서는 보강재의 침하를 허용하는 침하형 보강토 옹벽의 거동을 평가하기 위하여 원심모형실험을 수행하였다. 실험결과는 연결부의 침하를 허용하지 않는 일반형 보강토옹벽에 대한 결과와 비교 분석하여 침하형 보강토 옹벽의 안정성을 평가하였다. 모형실험에서 전면판은 알루미늄판을 사용하였으며, 보강재는 알루미늄 호일을 이용하였으며, 뒤채움지반은 화강풍화토를 사용하였다. 실험결과, 침하자유형 보강토옹벽은 80g의 중력수준에서 완전한 파괴상태에 도달하였으며, 일반형 보강토 옹벽이 69g의 중력수준에서 파괴된 것을 감안하면 침하자유형 보강토 옹벽이 안정성이 우수하다는 것을 확인할 수 있었다. 또한, 69g에서 침하자유형 보강토옹벽 저면에서의 수직토압이 일반형에 비해 16% 정도 크게 측정되었다.

  • PDF

전면판의 연속성이 보강토체의 안정성에 미치는 영향 (The Role of Wall Facing on the Stability of Reinforced Soil Wall)

  • 임유진;정종홍
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.465-472
    • /
    • 1999
  • A small scale model reinforced soil wall was constructed in a laboratory to investigate role of the wall facing and the effect of construction sequence on the wall. A panel type facing system and a block facing system are introduced for test. These two different types of facing adapt different construction procedure. The model wall is built with geogrid reinforcement, sand, and the facings on rigid surface. The model wall is instrumented with earth pressure gauges, LVDTs, and strain gauges. It is found in this study that the reinforced soil wall system built with geogrids and panel type facing system be the safest reinforced soil wall ever compared to the block type facing. Thus, it is recommended that study for the wall system be necessary for further wide usage in the future.

  • PDF

모형시험에 의한 점성토 보강토벽의 거동분석 (Analgesis of Clearly Reinforced Soil Wall Behavior by Model Test)

  • 이용안;이재열;김유성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 토목섬유 학술발표회 논문집
    • /
    • pp.85-94
    • /
    • 1999
  • Reinforced Soil Wall has several merits comparing with conventional retaining wall. The conventional method has the limit of wall height, ununiform settlement of the foundation ground, quality assurance of the embankment body, shortening of construction period, economical construction and so on. Basis of previous mentioned things reinforced soil wall is the substitutional method of conventional retaining wall and its necessity is continuously increasing. The embanking material used in reinforced soil wall is generally limited such as a good quality sandy soil, and in many case constructors have to transfer such a good embanking material from far away to construction site. As a result, they would pressed by time and economy. If poor soils could be used embanking material, for example, clayey soil produced in-situ by cutting and excavation, the economical merit of reinforced soil wall would be increased more and more. Likewise, a lot of study about laboratory experimental behavior of reinforced soil wall using a good quality soil is being performed, but is rare study about clayey soil containing much volume of fine particle relatively in korea. In this study, the authors investigated behavior of the geosynthetic reinforced and unreinforced soil walls using clayey soil as embanking material in view of horizontal movement of walls, bearing capacity and reinforcement stress.

  • PDF

Experimental investigation of retrofitted shear walls reinforced with welded wire mesh fabric

  • Yuksel, Suleyman B.
    • Structural Engineering and Mechanics
    • /
    • 제70권2호
    • /
    • pp.133-141
    • /
    • 2019
  • The aim of the present paper is to present the cyclic behavior of strengthened reinforced concrete shear wall test specimen, which was reinforced with cold drawn welded wire mesh fabric. Two reinforced concrete shear wall specimens have been tested in the present study. The walls were tested under reversed cyclic loading with loading applied near the tip of the walls. The control wall is tested in its original state to serve as a baseline for the evaluation of the repair and strengthening techniques. The two test specimens include a control wall and a repaired wall. The control wall test specimen was designed and detailed to simulate non-ductile reinforced concrete shear walls that do not meet the modern seismic provisions. The response of the original wall was associated with the brittle failure. The control shear wall was repaired by addition of the reinforcements and the concrete and then it was reloaded. The effectiveness of the repair technique was investigated. Test results indicate that there can be a near full restoration of the walls' strength. The data from this test, augmenting other data available in the literature, will be useful in calibrating improved analytical methods as they are developed.

차량 충돌에 의한 보강토 옹벽의 안정성 평가 (Evaluation of Stability in reinforced Earth Retaining Wall by Vehicle Collision)

  • 안광국;허열;홍기남;안민수
    • 한국지반환경공학회 논문집
    • /
    • 제11권6호
    • /
    • pp.39-46
    • /
    • 2010
  • 기존의 보강토 옹벽의 연구는 보강토 옹벽의 내적 외적파괴에 중점이 되어 연구가 이루어져 왔고 외부 충격에 관한 연구는 지진에 관한 것이 전부인 것이 현실이다. 도로의 발달로 인해서 도로 주변의 보강토 옹벽에 차량의 충돌 같은 외부 충격을 받는 경우가 늘어나고 있다. 그래서 본 연구에서는 신뢰도를 인정받고 있는 범용 유한요소 프로그램인 LS-DYNA를 사용하여 도로 주변 보강토 옹벽을 모델링하였고, NCAC에서 제공하는 8톤 중량의 Ford single unit truck을 이용하여 차량속도에 따른 보강토 옹벽의 거동 양상을 분석하였다. 그리고 향후 도로 주변에 시공되어지는 보강토 옹벽의 충돌에 관한 안정성을 확보하기 위해서 하단에 중력식 옹벽을 적용하였고 또한 높이를(0.5m, 1.0m, 1.5m) 변화시켜가면서 수치해석을 수행하여 보강토 옹벽의 거동을 분석하고 보강토 옹벽의 안정성을 확인 하였다.