• Title/Summary/Keyword: Reinforced soil slope

Search Result 125, Processing Time 0.027 seconds

Analysis on Failure Causes and Stability of Reinforced Earth Wall Based on a Field Case (현장사례를 이용한 보강토옹벽의 파괴원인 및 안정성 분석)

  • Hong, Kikwon;Han, Jung-Geun;Lee, Jong-Young;Park, Jai-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.109-114
    • /
    • 2013
  • This paper describes the global stability of the reinforced earth wall, which was collapsed by heavy rainfall. The seepage analysis was conducted to confirm the change effect of groundwater level on slope with reinforced earth wall. The seepage analysis result confirmed that the change of groundwater level is greatly influenced by rainfall. According to the change of groundwater level, the global stability analysis with reinforced earth wall was conducted based on the results of seepage analysis. The safety factor of the slope was 0.476 when the wall is collapsed firstly. The collapse cause analyzed that soil strength was weaken because the ground was saturated by continuous rainfall. Therefore, the global stability, which is considered heavy rainfall, should be conducted at design and construction of reinforced earth wall.

Effects of Alkali-Activated Soil Stabilizer Binder Based on Recycling BP By-Products on Soil Improvement (BP부산물을 재활용한 알칼리활성화 지반개량재의 지반개량효과에 관한 연구)

  • Lee, Yeong-Won;Kang, Suk-Pyo;Kim, Jae-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.158-165
    • /
    • 2014
  • The enormous quantity of 'Bayer-Process by-products' (BP by-products) discharged by industries producing alumina from bauxite represents an environmental and economical problem. As it is mainly composed of $Fe_2O_3$, $Al_2O_3$, $SiO_2$, CaO and $Na_2O$, it is thought that using BP by-products as a construction material is an effective way to consume such a large quantity of alkaline waste. In this study, This study evaluates the effect of alkali-activated binder based on recycling BP by-products on soil improvement through the evaluation of slope stability and seepage flow numerical analysis. The results of analysis of ground slope safety at dry season and wet season meet standard (Ministry of Land, Infrastructure and Transport, 2006) Especially, when wet season, the ground used soil improving material meet standard, while the ground used soil-nailing method doesn't. Also, permeability coefficient of improved soil is smaller than that of natural soil and saturation depth of reinforced ground surface with improve soil is lower than that of natural soil.

Comparison and Evaluation of Two-part Wedge Analysis for Reinforced Slopes with Centrifuge Test (보강사면(補强斜面)에 대한 Centrifuge Test와 Two-part Wedge 해석(解析)의 비교평가(比較評價))

  • Seo, In-Shik;Lee, Chin;Kim, Byung-Tak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.35-39
    • /
    • 1999
  • Results of two-part wedge analysis and centrifuge test executed by Zornberg et al. were compared for geotextile-reinforced slope stability. For two-part wedge analysis results of two cases, a frictional case considering internal friction of soil as interwedge friction and a nonfrictional case not considering, were also compared and evaluated. The analysis was based on limit equilibrium and two-part wedge was divided into slices as many as the number of geotextiles to obtain a maximum tension distribution mobilized in reinforcements. A significant observation was that the distribution was a triangular shape with maximum tension of geotextile at a transit point of interwedge. The number of geotextiles and failure surface of frictional case were reasonable and more comparable to results of the centrifuge tests than those of nonfrictional case. Therefore it can be said that two-part wedge analysis is recommendable for design analysis of reinforced slopes if an interwedge angle is regarded to be an angle of internal friction in soil.

  • PDF

Teaching learning-based optimization for design of cantilever retaining walls

  • Temur, Rasim;Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.763-783
    • /
    • 2016
  • A methodology based on Teaching Learning-Based Optimization (TLBO) algorithm is proposed for optimum design of reinforced concrete retaining walls. The objective function is to minimize total material cost including concrete and steel per unit length of the retaining walls. The requirements of the American Concrete Institute (ACI 318-05-Building code requirements for structural concrete) are considered for reinforced concrete (RC) design. During the optimization process, totally twenty-nine design constraints composed from stability, flexural moment capacity, shear strength capacity and RC design requirements such as minimum and maximum reinforcement ratio, development length of reinforcement are checked. Comparing to other nature-inspired algorithm, TLBO is a simple algorithm without parameters entered by users and self-adjusting ranges without intervention of users. In numerical examples, a retaining wall taken from the documented researches is optimized and the several effects (backfill slope angle, internal friction angle of retaining soil and surcharge load) on the optimum results are also investigated in the study. As a conclusion, TLBO based methods are feasible.

Geosynthetic Reinforced Soil Method for Restoration of Debris Flow Failure Slopes (쇄설성 유동파괴 사면 복구를 위한 토목섬유 보강토 공법)

  • Cho Yong-Seong;Kim You-Seong;Park Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.93-101
    • /
    • 2005
  • The formation of slopes is unavoidable under the special circumstance of Korea where $7%$ of the whole area are composed of mountains and civil engineering projects such as road and site developments are increasing with industrial development and horizontal expansions of urban area. Stability of slopes is one of quite important issues under special meteorological characteristics that over two-thirds of annual average rainfall is concentrated in summer season and the localized torrential downpour is getting more frequent recently. As a result of these circumstances, partial slope failures by debris flow of the high water content soils occur frequently in cut soil slopes. In this case of debris flow slope failure, slope declination method is selected fur the stable recovery because it is impossible to recover entirely by existing recovery methods. Seeding or special grass planting methods are followed separately without exception. The method by which entire recover with bigger stability ratio would be possible and grass planting work would be done simultaneously is developed. For debris flow failure slopes, this study secured the safety of slopes by preventing the inflow of rainwater and scour using geosynthetics-reinforced embankment, and created nature-friendly slopes by planting trees on the slopes.

Case Study on Global Slope Failure Case of Segmental Retaining Wall (블록식보강토옹벽의 전면 사면붕괴 사례연구)

  • Han, Jung-Geun;Cho, Sam-Deok;Jeong, Sang-Seom;Lee, Kwang-Wo;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2005
  • Recently, geosynthetic reinforced earth walls are gradually replacing conventional concrete retaining walls for reasons of economy, expediency of construction, and aesthetics. A number of reinforced soil walls having more than 10m heights have been constructed to make more effective development in the country. However, mistakes in design and construction of reinforced earth walls have resulted in many troubles such as failure of reinforced earth walls, horizontal deformationor breakdown of facings, and so forth during or after construction. In this paper, a case study on global sliding failure of a geogrid-reinforced tiered wall is carried out to investigate the causes of the failure and suggest the proper countermeasures. From the subsurface investigation and field instrumentation, It is found that the cause of the global sliding failure was occurred by decreasing of bearing capacity of foundation ground induced by infiltration of rainwater.

  • PDF

Numerical Investigation on the Stability of Reinforced Earth Wall during Rainfall (강우시 보강토 옹벽의 안정성에 관한 수치 해석 연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Han, Joon-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.23-32
    • /
    • 2008
  • This paper presents the results of numerical investigation on the stability of reinforced earth wall during rainfall. A series of limit-equilibrium based slope stability analyses within the framework of unsaturated shear strength, coupled with transient seepage analyses, were conducted with due consideration of rainfall characteristics in Korea. It is shown that the factor of safety of the reinforced wall during rainfall decreases with time due to decreases in the suction in the reinforced as well as retained zones. Also revealed is that the decrease in the factor of safety depends not only on the backfill soil type but also on the rainfall characteristics. Practical implications of the findings were discussed.

An Estimation on the Applicability of Hollow FRP Soil Nailing System (중공식 FRP쏘일네일링 시스템의 적용성 평가)

  • Kim, Hong-Taek;Lee, Hyuk-Jin;Jung, Woo-Chul;Koh, Hyung-Seon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1014-1023
    • /
    • 2006
  • Soil nailing is a reinforcement method used for stabilizing excavated wall or slope. Due to its many advantages such as ease of construction and economical efficiency, use of soil nailing is increased. However, the soil nail can't trespass on the neighbor private land, which pays rent for use. For this reason, removable soil nailing system was developed. However, the removal rate of this system is just about $50\sim70%$. To solve this, the Fiber Reinforced Polymer (FRP) soil nailing system, which does not need to be removed and allows for the trespass on the private land, is developed. In this paper, through theoretical and experimental studies in laboratory and field, we evaluate the stability and behavior characteristics of the FRP nail system. Besides, numerical analyses using FLAC2D were performed for various soil conditions, where the simulations for pullout tests were carried out. As a result, compared with the conventional removable soil nailing system, the FRP soil nailing systems show similar behavior characteristics.

  • PDF

The Behavior of a Cut Slope Stabilized by Use of Piles (억지말뚝으로 보강된 절개사면의 거동)

  • Hong, Won-Pyo;Han, Jung-Geun;Lee, Mun-Gu
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.111-124
    • /
    • 1995
  • On development of mountaneous or hilly area, stability of cut slope should be provided to prevent undesirable landslides. When piles are used as a countermeasure to stabilize existing landslide, stabilities for both piles and slope should be simultaneously satisfied to obtain the whole stability of the slope reinforced by piles. In order to confirm the effect of stabilizing piles on slope stabilization, it is necessary to investigate the behavior of the slope, in which the piles are installed. In this paper, first, the countermeasures used commonly to control unstable slope in Korea were summerized systematically. Nezt, the behavior of piles and slope soil was investigated by instrumentation installed into a cut slope for an apartment stabilized by a row of piles. Instrumentation could present sufficient effect of piles on slope stabilization Construction works in front of the row of piles affected the displacement of piles and slope. The construction works were divided into four stages, i.e. initial cutting stage of slope, excavation stages for retaining wall and parking space, and construction of retaining wall. As the result of research, the applicability of the proposed design method could be confirmed sufficiently.

  • PDF

A Case Study on AHP Technique Application for the Reinforcing Method Selection on a Cut-Slope (절토사면 보강기법 선정에 있어서 AHP기법 적용에 관한 사례연구)

  • Han, Jung-Geun;Lee, Jong-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.81-88
    • /
    • 2008
  • In this study, to determine the priority of the effect factors and the preferences of commonly used reinforcing methods for the cut-slope, the reasonable analysis using AHP technique was performed. Analytic Hierarchy Process (AHP) technique is the most widely used method out of all existing decision making methods. On choosing the methods, the most important factor is analyzed to be the stability and durability. Stability, durability and environmental compatibility took up over 50% of the total contributing factors. Cut-slope reinforced method preference with increasing stability method confirmed that concrete retaining wall, reinforced-soil wall and cutting method showed the highest preference rate. Also, in practical field conditions, the cutting method out of four methods was chosen to be the most effective method. This reflected that the methods that are equally superior in all aspects of evaluation factors are more important than the methods with superiority in highly prioritized evaluation factors.