• Title/Summary/Keyword: Reinforced soil mixture

Search Result 26, Processing Time 0.029 seconds

Characteristics of Compressive Strength of Geogrid Mixing Reinforced Lightweight Soil (지오그리드 혼합 보강경량토의 강도특성 연구)

  • Kim, Yun-Tae;Kwon, Yong-Kyu;Kim, Hong-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.383-393
    • /
    • 2006
  • This paper investigates strength characteristics and stress-strain behaviors of geogrid mixing reinforced lightweight soil. The lightweight soil was reinforced with geogrid in order to increase its compressive strength. Test specimens were fabricated by various mixing conditions including cement content, initial water content, air content and geogrid layer and then unconfined compression tests were carried out. From the experimental results, it was found that unconfined compressive strength as well as stress-strain behavior of lightweight soil were strongly influenced by mixing conditions. The more cement content that is added to the mixture, the greater its unconfined compressive strength. However, the more initial water content or the more air foam content, the less its unconfined compressive strength. It was observed that the strength of geogrid reinforced lightweight soil was increased due to reinforcing effect by the geogrid for most cases except cement content less than 20%. In reinforced lightweight soil, secant modulus $(E_{50})$ was increased as the strength increased due to the inclusion of geogrid.

  • PDF

Performance of fly ash stabilized clay reinforced with human hair fiber

  • Rekha, L. Abi;Keerthana, B.;Ameerlal, H.
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.677-687
    • /
    • 2016
  • Industrialization and urbanization are the two phenomena that are going relentless all over the world. The consequence of this economic success has been a massive increase in waste on one hand and increasing demand for suitable sites for construction on the other. Owing to the surplus raw materials and energy requirement needed for manufacturing synthetic fibers, applications of waste fibers for reinforcing soils evidenced to offer economic and environmental benefits. The main objective of the proposed work is to explore the possibilities of improving the strength of soil using fly ash waste as an admixture and Human Hair Fiber (HHF) as reinforcement such that they can be used for construction of embankments and land reclamation projects. The effect of fiber content on soil - fly ash mixture was observed through a series of laboratory tests such as compaction tests, CBR and unconfined compression tests. From the stress - strain curves, it was observed that the UCC strength for the optimised soil - flyash mixture reinforced with 0.75% human hair fibers is nearly 2.85 times higher than that of the untreated soil. Further, it has been noticed that there is about 7.73 times increase in CBR for the reinforced soil compared to untreated soil. This drastic increase in strength may be due to the fact that HHF offer more pull-out resistance which makes the fibers act like a bridge to prevent further cracking and thereby it improves the toughness which in turn prevent the brittle failure of soil-flyash specimen. Hence, the test results reveal that the inclusion of randomly distributed HHF in soil significantly improves the engineering properties of soil and can be effectively utilized in pavements. SEM analysis explained the change of microstructures and the formation of hydration products that offered increase in strength and it was found to be in accordance with strength tests.

Characteristics of Compressive Strength of Geogrid Mixing Reinforced Lightweight Soil (지오그리드 혼합 보강경량토의 압축강도특성 연구)

  • Kim, Yun-Tae;Kwon, Yong-Kyu;Kim, Hong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.37-44
    • /
    • 2006
  • This paper investigates strength characteristics and stress-strain behaviors of geogrid mixing reinforced lightweight soil. The lightweight soil was reinforced with geogrid in order to increase its compressive strength. Test specimens were fabricated by various mixing conditions including cement content, initial water content, air content and geogrid layer and then unconfined compression tests were carried out. From the experimental results, it was found that unconfined compressive strength as well as stress-strain behavior of lightweight soil was strongly influenced by mixing conditions. The more cement content that is added to the mixture, the greater its unconfined compressive strength. However, the more initial water content or the more air foam content, the less its unconfined compressive strength. It was observed that the compressive strength of reinforced lightweight soil increased reinforcing effect by the geogrid for most cases. Stress-strain relation of geogrid mixing reinforced lightweight soil showed a ductile behavior rather than a brittle behavior. In reinforced lightweight soil, secant modulus ($E_{50}$) also increased as its compressive strength increased due to the inclusion of geogrid.

Reinforced Effect of Staple Fiber for Soil - Waste Stone Sludge (폐석분 혼합토의 단섬유 보강 효과)

  • Choi, Min-Kyu;Park, Beum-Sic;Kim, Young-Muk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.45-55
    • /
    • 2012
  • This study is about the application of waste stone sludge as fill material. Waste stone sludge, weathered granite soil, and the mixture of the former and the latter strengthened with staple fiber are experimentally analyzed for measuring strength property. When staple fiber was mixed with waste stone sludge, weathered granite soil, and the mixture, there was a nearly linear relationship between the amount of the staple fiber and the increasing ratio of unconfined compressive strength. The increasing ratio of unconfined compressive strength was the largest in weathered granite soil. The increasing ratio of unconfined compressive strength of the mixture was similar to that of waste stone sludge. In the case of the mixture of weathered granite soil and waste stone sludge, an internal friction angle tended to increases rely on increasement of staple fiber content, whereas the change of cohesion was small. An internal friction angle was increased by 21 percent when staple fiber content is 0.75 percent. Comparing with weathered granite soil or waste stone sludge, strength parameters of the mixture were increased relatively. Thus strengthening effect of staple fiber in the mixture is expected.

Laboratory analysis of loose sand mixed with construction waste material in deep soil mixing

  • Alnunu, Mahdi Z.;Nalbantoglu, Zalihe
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.559-571
    • /
    • 2022
  • Deep soil mixing, DSM technique has been widely used to improve the engineering properties of problematic soils. Due to growing urbanization and the industrial developments, disposal of brick dust poses a big problem and causes environmental problems. This study aims to use brick dust in DSM application in order to minimize the waste in brick industry and to evaluate its effect on the improvement of the geotechnical properties. Three different percentages of cement content: (10, 15 and 20%) were used in the formation of soil-cement mixture. Unlike the other studies in the literature, various percentages of waste brick dust: (10, 20 and 30%) were used as partial replacement of cement in soil-cement mixture. The results indicated that addition of waste brick dust into soil-cement mixture had positive effect on the inherent strength and stiffness of loose sand. Cement replaced by 20% of brick dust gave the best results and reduced the final setting time of cement and resulted in an increase in unconfined compressive strength, modulus of elasticity and resilient modulus of sand mixed with cement and brick dust. The findings were also supported by the microscopic images of the specimens with different percentages of waste brick dust and it was observed that waste brick dust caused an increase in the interlocking between the particles and resulted in an increase in soil strength. Using waste brick dust as a replacement material seems to be promising for improving the geotechnical properties of loose sand.

Stress-strain behaviour of reinforced dredged sediment and expanded polystyrenes mixture under cyclic loading

  • Zhou, Yundong;Li, Mingdong;Wen, Kejun;Tong, Ruiming
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.507-513
    • /
    • 2019
  • Reinforced soil and Expanded Polystyrenes (EPS) mixture (RSEM) is a geomaterial which has many merits, such as light weight, wide strength range, easy for construction, and economic feasibility. It has been widely applied to improve soft ground, solve bridge head jump, fill cavity in pipeline and widen highway. Reutilizing dredged sediment to produce RSEM as earthfill can not only consume a large amount of waste sediment but also significantly reduce the construction cost. Therefore, there is an urgent need understand the basic stress-strain characteristics of reinforced dredged sediment-EPS mixture (RDSEM). A series of cyclic triaxial tests were then carried out on the RDSEM and control clay. The effects of cement content, EPS beads content and confining pressure on the cyclic stress-strain behaviour of RDSEM were analyzed. It is found that the three stages of dynamic stress-strain relationship of ordinary soil, vibration compaction stage, vibration shear stage and vibration failure stage are also applicative for RDSEM. The cyclic stress-strain curves of RDSEM are lower than that of control clay in the vibration compaction stage because of its high moisture content. The slopes of backbone curves of RDSEMs in the vibration shear stage are larger than that of control clay, indicating that the existence of EPS beads provides plastic resistance. With the increase of cement content, the cyclic stress-strain relationship tends to be steeper. Increasing cement content and confining pressure could improve the cyclic strength and cyclic stiffness of RDSEM.

Application of Continuous Fiber Soil Reinforcement System in Riparian Slopes (연속섬유보강토공법의 하천구역 적용사례에 관한 연구)

  • Koh, Jeung-Hyun;Hur, Young-Jin;Choi, Jaeyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.3
    • /
    • pp.169-176
    • /
    • 2011
  • The purpose of this study is to examine the ecologically suitable restoration characteristics in riparian slopes constructed by continuous fiber soil reinforced system (Geofiber system) which does not contain the concrete materials. The findings are as follows : (1) as the tested soil was not washed away by rainfalls and floods, Geofiber could replace the concrete wall and gravity stone net bag technique from the civil engineering structural point of view; (2) after one year of the construction, it was monitored that land cover ratio was 80-90%, which indirectly shows that vegetation is safely maintained; and (3) at the same time, 5-8 flora species were found in each test grid and more importantly dominant species have been moved from alien species to native herbaceous plants. From the above findings, Geofiber system is recommendable to restore the riparian slopes in terms of stability and natural landscape points. However, a long term monitering is needed considering flora succession process in a given environment as well as suitability tests should be carried out through the comparative investigations in other environments.

A Study on Soil Improvement Agent for Rainfall-Induced Erosion on the Soil Slope (흙 사면의 강우 침식보강을 위한 토양개량제 개발에 관한 연구)

  • Kang, Dae-Heung;Kim, Young-Suk;Hwang, In-Taek;Kim, Jae-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.237-246
    • /
    • 2021
  • With climate change, debris flow has been increasing due to the collapse and erosion of shallow slopes caused by extreme rainfall. It is preferred to an economical and eco-friendly method rather than reinforcement of soil slopes with the earth anchor or nailing method. In this study, a soil improvement agent was developed by utilizing insitu soil, leaf mold, and used harbal medicine to help sufficient vegetation. In addition, to prevent surface erosion, shear strength of the soil was increased by using micro cement and hemihydrate gypsum as additives. The optimum mix ratio of the mixture is determined by increasing the shear strength by checking the erosion progress of the ground surface layer due to rainfall through an laboratory test. The safety factor of soil slope has been improved on the slope surface reinforced by the improvement agent, and the strength of erosion has been increased, making it efficient to cope with heavy rain during wet season.

Engineering Characteristics of Mixtures according to Water Sludge Ratio and Reinforcing Waste Fishing Net (정수슬러지의 혼합비율 및 폐어망 보강에 따른 혼합토의 공학적 특성)

  • Yun, Daeho;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.29-37
    • /
    • 2013
  • In order to recycle both water sludge and waste fishing net(WFN), it was investigated in this paper the engineering characteristics of mixtures that consisted of different content of water sludge(0%, 10%, 30%, 50%) and reinforced with waste fishing net(unreinforced, untreated WFN, glue treated WFN). WFN or glue treated WFN(1&2 layers) was also added to the mixture to improve the interlocking between the soil particle and WFN. Several series of laboratory tests such as compaction test, triaxial test, oedometer test, permeability test and leaching test were carried out. The experimental test results indicated that, as water sludge content increases, maximum dry unit weight, cohesion, friction angle, and permeability of the mixture decrease, while optimum moisture content, compression index, expansion index and compressibility increase. For the case of reinforced mixture, its cohesion and friction angle are increased due to the inclusion of WFN and glue treated WFN. Leaching result of mixture was satisfied with standard of ministry of environment.

Unconfined Compressive Strength Characteristics of Eco-Friendly Stabilizers and Carbon Fiber Reinforced Soil (친환경고화재와 탄소섬유 보강토의 일축압축강도 특성)

  • Sewook Oh;Sunghwan Yang;Hongseok Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.8
    • /
    • pp.13-19
    • /
    • 2024
  • In this study, to reinforce the surface layer of weathered soil slopes where erosion and collapse of surface layer occur, compression strength tests were conducted by mixing carbon fiber and eco-friendly stabilizer (E.S.B.) To determine the optimal mixing ratio of E.S.B. and carbon fiber, E.S.B. was set at conditions of 10%, 20%, and 30%, and carbon fiber at 0.3%, 0.6%, 0.9%, and 1.2%. Additionally, to analyze the changes in compressive strength according to dry density and curing period, 85% and 95% of the maximum dry unit weight were applied, and curing periods were set to 3 days, 7 days, and 28 days. The standard strength for surface layer reinforcement of slopes is proposed as 4 MPa at 7 days and 6 MPa at 28 days according to ACI 230.1R-09 (2009). The compression test results showed that the unconfined compressive strength of E.S.B. reinforced soil met the standard strength at an E.S.B. mixing ratio of 10% or more for 95% compaction. Moreover, when carbon fiber was mixed with E.S.B. reinforced soil, a ductile fracture pattern was observed after the yield point due to compressive strength, indicating that the mixture could compensate for post-yield failure. It was analyzed that the maximum strength is exhibited at a carbon fiber mixing ratio of 0.6%. The unconfined compressive strength of carbon fiber reinforced soil increases by approximately 54-70% compared to the condition without carbon fiber.