• 제목/요약/키워드: Reinforced index

검색결과 346건 처리시간 0.027초

Analytical and numerical algorithm for exploring dynamic response of non-classically damped hybrid structures

  • Raheem, Shehata E. Abdel
    • Coupled systems mechanics
    • /
    • 제3권2호
    • /
    • pp.171-193
    • /
    • 2014
  • The dynamic characterization is important in making accurate predictions of the seismic response of the hybrid structures dominated by different damping mechanisms. Different damping characteristics arise from the construction of hybrid structure with different materials: steel for the upper part; reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling damping matrices and experimental verification is challenging because damping cannot be determined via static tests as can mass and stiffness. The assumption of classical damping is not appropriate if the system to be analyzed consists of two or more parts with significantly different levels of damping. The dynamic response of structures is critically determined by the damping mechanisms, and its value is very important for the design and analysis of vibrating structures. A numerical algorithm capable of evaluating the equivalent modal damping ratio from structural components is desirable for improving seismic design. Two approaches are considered to explore the dynamic response of hybrid tower of cable-stayed bridges: The first approach makes use of a simplified model of 2 coupled lumped masses to investigate the effects of subsystems different damping, mass ratio, frequency ratio on dynamic characteristics and equivalent modal damping; the second approach employs a detailed numerical step-by step integration procedure.

건축용 외장재와 접착제의 발연특성에 관한 연구 (A Study on the Characteristics of Smoke Release for Architectural Surface Materials and Architectural Adhesives)

  • 박영주;김원종;이해평;유재열;양영숙
    • 한국안전학회지
    • /
    • 제29권1호
    • /
    • pp.21-24
    • /
    • 2014
  • In this study, we have investigated the maximum smoke density and the initial stage smoke density in order to see the characteristics of smoke release of the architectural surface materials and the architectural adhesives, using smoke density chamber. As a result of the study, polyurethane foam showed the highest smoke density index, 206.55 within 10 min. In the case of the other samples, reinforced styrofoam was followed as 39.90, general styrofoam 33.73, and glass fiber 5.40, respectively. In the intial stage of a fire, it is forecasted actually to give hardship at the clear visibility. In the case of architectural adhesives, the highest ranking was those for windows and doors 509.64, stone 275.63, wood 232.25, tile 18.65, and styrofoam 6.44 were followed, respectively. This result is an early research to show characteristics of smoke release through experiment. However, it is meaningful that this study can be used as a basic for further study on architectural fire hazard prediction.

Partial safety factors for retaining walls and slopes: A reliability based approach

  • GuhaRay, Anasua;Baidya, Dilip Kumar
    • Geomechanics and Engineering
    • /
    • 제6권2호
    • /
    • pp.99-115
    • /
    • 2014
  • Uncertainties in design variables and design equations have a significant impact on the safety of geotechnical structures like retaining walls and slopes. This paper presents a possible framework for obtaining the partial safety factors based on reliability approach for different random variables affecting the stability of a reinforced concrete cantilever retaining wall and a slope under static loading conditions. Reliability analysis is carried out by Mean First Order Second Moment Method, Point Estimate Method, Monte Carlo Simulation and Response Surface Methodology. A target reliability index ${\beta}$ = 3 is set and partial safety factors for each random variable are calculated based on different coefficient of variations of the random variables. The study shows that although deterministic analysis reveals a safety factor greater than 1.5 which is considered to be safe in conventional approach, reliability analysis indicates quite high failure probability due to variation of soil properties. The results also reveal that a higher factor of safety is required for internal friction angle ${\varphi}$, while almost negligible values of safety factors are required for soil unit weight ${\gamma}$ in case of cantilever retaining wall and soil unit weight ${\gamma}$ and cohesion c in case of slope. Importance of partial safety factors is shown by analyzing two simple geotechnical structures. However, it can be applied for any complex system to achieve economization.

Seismic fragility assessment of self-centering RC frame structures considering maximum and residual deformations

  • Li, Lu-Xi;Li, Hong-Nan;Li, Chao
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.677-689
    • /
    • 2018
  • Residual deformation is a crucial index that should be paid special attention in the performance-based seismic analyses of reinforced concrete (RC) structures. Owing to their superior re-centering capacity under earthquake excitations, the post-tensioned self-centering (PTSC) RC frames have been proposed and developed for engineering application during the past few decades. This paper presents a comprehensive assessment on the seismic fragility of a PTSC frame by simultaneously considering maximum and residual deformations. Bivariate limit states are defined according to the pushover analyses for maximum deformations and empirical judgments for residual deformations. Incremental Dynamic Analyses (IDA) are conducted to derive the probability of exceeding predefined limit states at specific ground motion intensities. Seismic performance of the PTSC frame is compared with that of a conventional monolithic RC frame. The results show that, taking a synthetical consideration of maximum and residual deformations, the PTSC frame surpasses the monolithic frame in resisting most damage states, but is more vulnerable to ground motions with large intensities.

Component deformation-based seismic design method for RC structure and engineering application

  • Han, Xiaolei;Huang, Difang;Ji, Jing;Lin, Jinyue
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.575-588
    • /
    • 2019
  • Seismic design method based on bearing capacity has been widely adopted in building codes around the world, however, damage and collapse state of structure under strong earthquake can not be reflected accurately. This paper aims to present a deformation-based seismic design method based on the research of RC component deformation index limit, which combines with the feature of Chinese building codes. In the proposed method, building performance is divided into five levels and components are classified into three types according to their importance. Five specific design approaches, namely, "Elastic Design", "Unyielding Design", "Limit Design", "Minimum Section Design" and "Deformation Assessment", are defined and used in different scenarios to prove whether the seismic performance objectives are attained. For the components which exhibit ductile failure, deformation of components under strong earthquake are obtained quantitatively in order to identify the damage state of the components. For the components which present brittle shear failure, their performance is guaranteed by bearing capacity. As a case study, seismic design of an extremely irregular twin-tower high rise building was carried out according to the proposed method. The results evidenced that the damage and anti-collapse ability of structure were estimated and controlled by both deformation and bearing capacity.

Experimental and numerical studies on flexural behavior of high strength concrete beams containing waste glass

  • Haido, James H.;Zainalabdeen, Marwa A.;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • 제11권3호
    • /
    • pp.239-253
    • /
    • 2021
  • The behavior of concrete containing waste glass as a replacement of cement or aggregate was studied previously in the most of researches, but the present investigation focuses on the recycling of waste glass powder as a substitute for silica fume in high strength concrete (HSC). This endeavor deals with the efficiency of using waste glass powder, as an alternative for silica fume, in the flexural capacity of HSC beam. Thirteen members with dimensions of 0.3 m width, 0.15 m depth and 0.9 m span length were utilized in this work. A comparison study was performed considering HSC members and hybrid beams fabricated by HSC and conventional normal concrete (CC). In addition to the experiments on the influence of glass powder on flexural behavior, numerical analysis was implemented using nonlinear finite element approach to simulate the structural performance of the beams. Same constitutive relationships were selected to model the behavior of HSC with waste glass powder or silica fume to show the matching between the modeling outputs for beams made with these powders. The results showed that the loading capacity and ductility index of the HSC beams with waste glass powder demonstrated enhancing ultimate load and ductility compared with those of HSC specimens with silica fume. The study deduced that the recycled waste glass powder is a good alternative to the pozzolanic powder of silica fume.

How does the knowledge level affect the seismic retrofit cost? The case study of a RC building

  • Miano, Andrea;Chiumiento, Giovanni;Formisano, Antonio;Prota, Andrea
    • Structural Engineering and Mechanics
    • /
    • 제82권5호
    • /
    • pp.557-569
    • /
    • 2022
  • The retrofit of existing structures in high seismic zones is a crucial issue in the earthquake engineering field. The interest of the research community is particularly high for the structures that do not respect current seismic codes and present structural deficiencies such as poor detailing and lack of capacity design provisions. A reinforced concrete (RC) school building is used as case study to show the influence of different knowledge levels on the seismic retrofitting cost assessment. The safety assessment of the case study building highlights deficiencies under both vertical and seismic loads. By considering all the possible knowledge levels defined by the Italian such as by the European codes in order to derive the mechanical properties of the school building constitutive materials, the retrofit operations are designed to achieve different seismic safety thresholds. The retrofit structural costs are calculated and summed up to the costs for in-situ in tests. The paper shows how for the case study building the major costs spent for a large number of in-situ tests allows to save a consistent amount of money for retrofit operations. The hypothesis of demolition and reconstruction of the building is also compared in terms of costs with all the analyzed retrofit options.

A two-step interval risk assessment method for water inrush during seaside tunnel excavation

  • Zhou, Binghua;Xue, Yiguo;Li, Zhiqiang;Gao, Haidong;Su, Maoxin;Qiu, Daohong;Kong, Fanmeng
    • Geomechanics and Engineering
    • /
    • 제28권6호
    • /
    • pp.573-584
    • /
    • 2022
  • Water inrush may occur during seaside urban tunnel excavation. Various factors affect the water inrush, and the water inrush mechanism is complex. In this study, nine evaluation indices having potential effects on water inrush were analysed. Specifically, the geographic and geomorphic conditions, unfavourable geology, distance from the tunnel to sea, strength of the surrounding rock, groundwater level, tidal action, cyclical footage, grouting pressure, and grouting reinforced region were analysed. Furthermore, a two-step interval risk assessment method for water inrush management during seaside urban tunnel excavation was developed by a multi-index system and interval risk assessment comprised of an interval analytic hierarchy process, fuzzy comprehensive evaluation, and relative superiority analysis. The novel assessment method was applied to the Haicang Tunnel successfully. A preliminary interval risk assessment method for water inrush was performed based on engineering geological conditions. As a result, the risk level fell into a risk level IV, which represents a section with high risk. Subsequently, a secondary interval risk assessment method was performed based on engineering geological conditions and construction conditions. The risk level of water inrush is reduced to a risk level II. The results agreed with the current tunnel situation, which verified the reliability of this approach.

Reliability-based stochastic finite element using the explicit probability density function

  • Rezan Chobdarian;Azad Yazdani;Hooshang Dabbagh;Mohammad-Rashid Salimi
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.349-359
    • /
    • 2023
  • This paper presents a technique for determining the optimal number of elements in stochastic finite element analysis based on reliability analysis. Using the change-of-variable perturbation stochastic finite element approach, the probability density function of the dynamic responses of stochastic structures is explicitly determined. This method combines the perturbation stochastic finite element method with the change-of-variable technique into a united model. To further examine the relationships between the random fields, discretization of the random field parameters, such as the variance function and the scale of fluctuation, is also performed. Accordingly, the reliability index is calculated based on the explicit probability density function of responses with Gaussian or non-Gaussian random fields in any number of elements corresponding to the random field discretization. The numerical examples illustrate the effectiveness of the proposed method for a one-dimensional cantilever reinforced concrete column and a two-dimensional steel plate shear wall. The benefit of this method is that the probability density function of responses can be obtained explicitly without the use simulation techniques. Any type of random variable with any statistical distribution can be incorporated into the calculations, regardless of the restrictions imposed by the type of statistical distribution of random variables. Consequently, this method can be utilized as a suitable guideline for the efficient implementation of stochastic finite element analysis of structures, regardless of the statistical distribution of random variables.

하이브리드화에 의한 탄소 직물 복합재료의 역학적 특성 및 열적 특성 (Mechanical and Thermal Properties of Phenolic Composite reinforced with Hybrid of Carbon Fabrics)

  • 김재홍;박종규;정경호;강태진
    • Composites Research
    • /
    • 제20권4호
    • /
    • pp.18-24
    • /
    • 2007
  • 본 연구에서는 전구체의 종류에 따라 PAN계/rayon계, 직물의 형태에 따라 연속사 및 방적사 탄소 직물을 사용하여 하이브리드 복합재료를 제조하여 역학적 특성과 열적 특성을 살펴보았다. 인장, 층간 전단강도 실험을 통해 연속사 PAN계 탄소 직물을 많이 사용한 하이브리드 복합재료에서 우수한 역학적 특성을 보이는 것으로 확인되었다. 토치 테스트에서는 rayon계 탄소 직물 복합재료의 삭마 저항성이 가장 떨어짐을 확인할 수 있었다. 또한, 방적사 PAN계 탄소 직물과 rayon계 탄소 직물을 하이브리드화한 복합재료가 면내 방향과 수직 방향 모두에서 저 열전도도 구현에 유리한 특성을 보여주었다.